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Abstract Increasing numbers of studies have explored hu-
man observers’ ability to rapidly extract statistical descrip-
tions from collections of similar items (e.g., the average size
and orientation of a group of tilted Gabor patches).
Determining whether these descriptions are generated by
mechanisms that are independent from object-based sam-
pling procedures requires that we investigate how internal
noise, external noise, and sampling affect subjects’ perfor-
mance. Here we systematically manipulated the external
variability of ensembles and used variance summation mod-
eling to estimate both the internal noise and the number of
samples that affected the representation of ensemble average
size. The results suggest that humans sample many more
than one or two items from an array when forming an
estimate of the average size, and that the internal noise that
affects ensemble processing is lower than the noise that
affects the processing of single objects. These results are
discussed in light of other recent modeling efforts and
suggest that ensemble processing of average size relies on
a mechanism that is distinct from segmenting individual
items. This ensemble process may be more similar to texture
processing.

Keywords Texture - Scene perception - Visual perception

Outside of the laboratory, our visual system often comes
across a cluttered scene with thousands of objects. But,
unlike a random scatter of items, this visual world often
contains systematic structure and redundancy—such as col-
lections of similar items (e.g., books on a shelf or faces in a
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crowd). To make the most of its limited resources, the visual
system may exploit this systematicity. One strategy is to rely
on redundancy within the scene to collapse information
across similar objects in order to represent the general de-
scription of the group rather than information for every
single item in the group. This summary representation or
statistic has been called an “ensemble feature.” For example,
laboratory experiments suggest that humans can represent
with little effort the mean size (Ariely, 2001; Chong &
Treisman, 2003; Im & Chong, 2009), general direction of
motion (Watamaniuk & Duchon, 1992), general location or
“centroid” (Alvarez & Oliva, 2008), and approximate num-
ber of items in a group (Halberda, Sires, & Feigenson,
2006), as well as the average emotion of faces in a crowd
(Haberman & Whitney, 2009, 2010).

Much of the controversy surrounding this emerging lit-
erature on ensemble features has focused on the question of
whether representing such features requires a mechanism
distinct from our ability to represent individual objects.
For example, Myczek and Simons (2008) argued that rely-
ing on one or two individual items from a display to esti-
mate the ensemble average of the entire display could result
in levels of performance similar to those observed for hu-
man subjects in ensemble average size tasks. This would
amount to there being no distinct mechanism for represent-
ing ensemble average size—that is, no mechanism distinct
from simply sampling a few individual objects from the set.
Average size was one of the first ensemble features to be
investigated (Ariely, 2001), and it has perhaps drawn the
most skepticism and widest criticism—owing, perhaps, to
the suggestions that early visual areas have no “size-tuned”
neurons (Myczek & Simons, 2008; Simons & Myczek,
2008) and that representing object size is traditionally
thought to require selecting individual objects from the
background (e.g., Bundesen & Larsen, 1975; Cave &
Kosslyn, 1989). At the moment, the process that enables
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the coding of average size remains to be determined, and
criticism has primarily focused on the possibility that per-
formance derives from object-based sampling strategies.

Another possible model for how humans represent en-
semble features is texture processing—in which early fea-
ture information is pooled across regions without requiring
segmentation of individual objects (Dakin & Watt, 1997;
Malik & Perona, 1990; Parkes, Lund, Angelucci, Solomon,
& Morgan, 2001). It may be that information such as the
approximate number of items and the average size of the
items can be estimated by pooling early featural evidence
such as filled region and density, without actually segment-
ing individual items (Tibber, Greenwood, & Dakin, 2012).

It remains to be determined whether representing ensem-
ble features such as average size requires mechanisms sim-
ilar to or distinct from those employed when selecting
individual items or processing textures. One approach to
informing such debates is to measure hallmarks or signa-
tures of visual processing that may distinguish these modes
of processing—such as internal noise and sample size. For
example, several authors have suggested the possibility that
the internal noise that affects ensemble representation may
be lower than the internal noise that affects individual object
representation, perhaps owing to ensembles relying on a
distinct representational route (Alvarez, 2011; Ariely,
2001, 2008). If the internal noise that affects the represen-
tation of average size were to be significantly lower than the
internal noise that affects the representation of individual
object size, this would suggest that representing individual
sizes is not the mechanism relied on for average size repre-
sentation (though the observed thresholds could also be
lower due to increased numbers of samples). Similarly, if
the number of objects that appear to be averaged during
average-size processing exceeded the broadly assumed limit
of three to four objects for parallel attention (Oksama &
Hyond, 2004; Pylyshyn & Storm, 1988; Scholl, 2001), this
would also suggest that representing individual sizes is not
the mechanism relied on for average size representation.
Here we explored both of these aspects of average-size
representation to test the plausibility of object-based sam-
pling strategies and to address several outstanding questions
related to ensemble feature processing.

Several approaches have been undertaken to test the
plausibility of object-based sampling strategies for ensemble
processing. For average size, Chong, Joo, Emmanouil, and
Treisman (2008) demonstrated that mixing trials together
that require different object-based sampling strategies does
not lead to a reduction in human performance overall, sug-
gesting that either subjects do not use such strategies or that
they are able to rapidly determine the optimal strategy for
each display and switch strategies from trial to trial, given
only 200 ms of display time. Because the latter option seems
unlikely, the authors suggested that subjects must be relying

on a mechanism distinct from selecting individual objects.
In average-orientation processing (Parkes et al., 2001),
humans appear to be able to extract an ensemble average
even when individual items are too crowded to allow for
successful discrimination of individual orientations. This
too suggests that ensemble features might be represented
without selecting individual items. And, for representing the
average emotion of a collection of faces (Haberman &
Whitney, 2009, 2010) and the average location of a set of
dots (Alvarez & Oliva, 2008), measuring subjects’ response
variability for recalling individual items has been used to
estimate the internal noise that might affect ensemble pro-
cessing and, via Monte Carlo simulation, to estimate the
number of items that would need to be averaged in order to
attain human-like levels of performance in ensemble feature
tasks. It was argued that these estimates (e.g., eight objects
for the centroid, and seven for faces) exceeded the expected
limits of object-based parallel attention (Oksama & Hyona,
2004; Pylyshyn & Storm, 1988; Scholl, 2001), suggesting
that subjects did not rely on this type of object-based
sampling strategy. Because previous methods have relied
on the observed discrimination thresholds or response
variability when subjects must represent, for instance,
the size of a single item as a way of estimating the
internal noise that might affect ensemble processing
(Alvarez & Oliva, 2008; Haberman & Whitney, 2009,
2010), the question of whether the internal noise that
affects ensemble representation is lower than the internal
noise that affects individual-object representation has not
yet been tested. The opportunity has arisen to use vari-
ance summation modeling to estimate both the internal
noise and the sample size that affect ensemble feature
processing from within the ensemble feature task itself.

The variance summation approach enables one to mea-
sure how observers’ response variability may change as a
function of stimulus variability. Intuitively, it should be
easier for an observer to estimate the average size of an
ensemble when variability in sizes is low, and perfor-
mance should become poorer as variability increases
(Fig. 1). The variance summation approach exploits a
noise analysis that assumes the additivity of variances
on the basis of convolution to model the data (Eq. 1)
in terms of the local and global limits of the system and
external noise. In the variance summation model, the
local and global limits are characterized by the internal
noise of the ensemble averaging mechanism and the
sample size that the observer gathers from the stimulus,
and the external noise is assessed by the variability
embedded within the stimulus, such that

Oobs = V/ Uintz + chtz/na (1)

where o, 1S the observed threshold, oy, is the intrinsic
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Fig. 1 Displays: Cartoon
examples of arrays from
Experiment la (ensembles)
with different levels of external
noise—(a) 1°, (b) 3°, (c) 6°, and
(d) 10°
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or internal noise, 0. is the external noise, and » is the
number of samples being employed. In the present
experiments, 0. is the variability of the sizes within
an ensemble of sine gratings (Fig. 1), which is under the
experimenter’s control (i.e., the Gaussian distribution of
object sizes in the display). o, is the noise or error
inside the head of the observer (also assumed to be
Gaussian) that affects their estimate of the ensemble
average. Thus, Eq. 1 is simply a way of combining
these two Gaussian sources of noise in order to fit the
observed sensitivity of the observer.

By measuring observed thresholds (o,s) at multiple
levels of external noise (o), it is possible to fit values
for the internal noise affecting the ensemble averaging
mechanism (o, and the number of samples () that the
observer seems to rely on (i.e., the number of individual
gratings a subject averages). When the external variabil-
ity (0exy) 1s lower than the internal noise (oj,), the
observed threshold (o.,s) will derive almost entirely
from the internal noise. But, as the external variability
(0ext) increases, it will eventually come to exceed the
internal noise (oj,) to become the dominant force de-
termining the observed threshold (o). Intuitively, the
observed threshold will not increase rapidly until the
external noise is greater than the internal noise.

Sample size will function to raise or lower the ob-
served thresholds (o,ps) across all levels of external
noise (0e), as pooling evidence from greater numbers
of items will result in reduced observed thresholds
(0obs). The pattern of reduction in the observed thresh-
olds due to increased sample size is distinct and sepa-
rable from the reduction that occurs from reduced
internal noise.

Our approach here was inspired by previous research
in which variance summation modeling has been used
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to estimate the internal noise and efficiency (i.e., sample
size) of texture discrimination mechanisms (Beaudot &
Mullen, 2005; Dakin, 2001; Dakin, Bex, Cass, & Watt,
2009; Demanins, Hess, Williams, & Keeble, 1999;
Heeley, Buchanan-Smith, Cromwell, & Wright, 1997).
For the present case, a benefit of this approach is that,
once generated, estimates of the internal noise affecting
ensemble processing can be compared to behavioral
estimates of the internal noise affecting individual-
object processing to address the question of whether or
not the internal noise for ensemble processing is lower
than that for processing individual items.

The approach taken here for estimating internal noise and
sample size can be used to study any ensemble process that
pools evidence across multiple samples. In this way, the
present work aims to introduce an approach (i.e., variance
summation modeling) that can be used to study ensemble
feature processing more generally. In the present case, we
use this approach to address two important theoretical ques-
tions: Is the internal noise for ensemble processing lower
than the internal noise for processing individual items, and
does the number of samples required by ensemble process-
ing exceed the three- to four-item limit of object-based
attention?

The experiments

We relied on a standard two-alternative forced choice
psychophysical discrimination task in which subjects
had to judge which of two briefly flashed arrays had
either the larger individual size or the larger average
size. Experiments la (ensembles) and 1b (single gra-
tings) were run within subjects, so as to allow compar-
isons across the two tasks.
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Method
Subjects

The two authors and 14 naive subjects participated in the
experiment. All of the subjects had normal or corrected-to-
normal vision. The naive subjects received course extra
credit for participating.

Apparatus and stimuli

The stimuli were generated using MATLAB software, togeth-
er with the Psychophysics Toolbox extensions (Brainard,
1997; Pelli, 1997), and were displayed on an LCD monitor
driven by a Macintosh iMac computer (the viewable area was
a gray central square window with a 17-in. diagonal). The
subjects were seated approximately 50 cm from the screen and
viewed the display binocularly. At this viewing distance, each
pixel was approximately 0.04° of visual angle, and each
grating subtended between 1.6° and 4.0° of visual angle. The
stimuli were presented on a gray background and consisted of
one or more sinusoidal gratings with a spatial frequency of
4 cycles/deg and a Michelson contrast of 99.8 % (this is within
the range of spatial frequencies that produce optimal orienta-
tion discrimination [Dakin, 2001], so as to allow us to com-
pare performance with orientation processing in future work).
In Experiments la (ensembles), multiple gratings (9, 11, 13,
16, 19, or 23 gratings) were randomly located on the display,
subtending 56° x 40° of visual angle. In Experiments 1b
(single gratings), only one grating appeared within this same
viewing area. The locations of gratings varied across the two
stimulus arrays in order to minimize the masking of stimuli in
the second flash by those in the first flash.

To focus on the ensemble processing of distinct objects, we
ensured that each item in the array was a segmentable indi-
vidual object. Each object on the display had a clearly drawn
border that was salient in order to avoid blur and reduce the
blending of gratings and background. Because crowding by
adjacent stimuli occurs in a compulsory manner and may be
equivalent to perceiving texture (Parkes at al., 2001), we also
ensured that adjacent gratings were separated from each other
by at least half of their eccentricity in the display—that is,
crowding in foveal vision only occurs over very small dis-
tances (2—6 arcmin; Toet & Levi, 1992), whereas crowding in
peripheral vision occurs over larger distances, roughly at
about half of the eccentricity (Pelli & Tillman, 2008). This
ensured that our displays were not crowded.

Procedure

The basic procedure required subjects to view two brief dis-
plays (100 ms each), one after the other, and then to judge
which display, the first or second, contained either the larger
average size (Exp. la, ensembles) or the larger individual
grating (Exp. 1b, single gratings; see Fig. 2). Auditory feed-
back for errors was provided throughout. The short exposure
duration of 100 ms was chosen to prevent scanning eye move-
ments (Morgan, Ward, & Castet, 1998). The interstimulus
interval was randomly varied from 1,000 to 2,200 ms, making
the onset of the second flash unpredictable, in order to disrupt
strategic planning in preparation for the second display. This
delay also reduced any afterimage effects of the first stimulus
display, as well as possible effects of the apparent rotation of
the second display from the first.

We relied on a standard adaptive procedure (Watson &
Pelli, 1983) to identify each subject’s threshold. Six inter-
leaved QUEST routines of 40 trials each were run for each

Fig. 2 Method: A sample trial
from Experiment la
(ensembles)
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threshold, and the final threshold estimate was obtained
by fitting the data with a Weibull function and evaluat-
ing thresholds at 75 % correct responses. The Weibull
function was fitted to the behavioral data using the
Psignifit toolbox, Version 3.0, for Python, which imple-
mented the maximum likelihood method described by
Wichmann and Hill (2001).

On each trial, the QUEST procedure determined the sizes
for the gratings to be displayed in order to determine the size
difference that resulted in 75 %-correct performance for the
subject. There was a standard size and a comparison size for
each trial. One of the two displays (first or second) always
showed the standard size of 2.8° in diameter.

In Experiment la (ensembles), we systematically var-
ied the external variability of sizes among the items
within each ensemble. The size for each grating within
a display was randomly drawn from a Gaussian distri-
bution centered on the size that QUEST had specified
for that display (e.g., 2.8° in diameter, or a comparison
size) with a standard deviation (o = 1°, 3°, 6° or 10°).
These SDs were varied across four separate blocks of
trials, their order randomized across subjects. We en-
sured that the individual sizes of gratings in each dis-
play adhered to the specified mean and SD for each
trial, with tolerances of +0.16° (i.e., four pixels) for the
mean and +0.02° for the SD. Though this restriction
violated the assumptions of random sampling, the devi-
ation from random sampling was small given the set
sizes that we used, and this restriction ensured that the
trials within each block accurately reflected the target
mean and SD while still allowing for sufficient variabil-
ity across trials to fit the variance summation model. To
provide an accurate fit to the data, we ensured that all
analyses took into account the actual average size of the
individual elements presented to the subjects, instead of
the values suggested by QUEST. Since the average
orientation of the gratings was not a relevant feature
in this experiment, the average orientation of the gra-
tings for each display varied randomly among six values
(30°, 60°, 90°, 120°, 150° and 180°).

In Experiment 1b (single gratings), we measured size
discrimination thresholds for a single grating at the standard
size of 2.8° in diameter. We included two different blocks
that varied the locations of the single gratings, one in a
foveal region (4° x 4° around the fixation cross) and one in
the periphery (from 56° x 40° of visual angle, but never
appearing within the 4° x 4° foveal region). Including two
blocks allowed us to estimate the reduction of size sensitiv-
ity as a function of eccentricity.

Each of the six blocks (four blocks for Exp. la and two
blocks for Exp. 1b) lasted approximately 15 min, and the
order of these blocks was randomized across subjects. All
blocks were run during a single session.

@ Springer

Results

In Experiment la (ensembles), we systematically manipu-
lated the variability of the sizes within each ensemble as a
source of external noise (Fig. 1). If ensemble representations
pool evidence across items that vary in size, the observed
thresholds should increase systematically with increasing
external noise. Figure 3 displays the observed thresholds
(0obs)- The thresholds smoothly increased as external vari-
ability (0ey) increased.

In an ensemble process that pools evidence across mul-
tiple samples, the specific pattern of increase in the ob-
served thresholds as a function of increasing external noise
should be systematically related to a relationship between
sample size (n) and the internal (o;,) and external (0ey)
noise. This relationship can be formalized by the additivity
of variances, as in Eq. 1 (Beaudot & Mullen, 2005; Dakin,
2001; Dakin et al., 2009; Demanins et al., 1999; Heeley et
al., 1997). This approach has been used successfully to
estimate the internal noise and sample size for average-
orientation processing (Beaudot & Mullen, 2005; Dakin,
2001; Heeley et al., 1997). In this model, the manner in
which the average-size thresholds (o,ps) increase as the
external variability in sizes increases (0. can be deter-
mined by a summation of noise processes.

We fit the data from the ensemble size blocks for each
subject separately using the variance summation model
(Eq. 1) to obtain estimates of the internal noise and the
number of samples involved in the averaging process using
least-squares estimation. The group fit can be seen in Fig. 4,
where the observed thresholds from Fig. 3 are reprinted as
data points and the model fit is a smooth curve. The model
provided an accurate fit to the subjects’ performance as a
function of bandwidth (R* = .99, p < .01).

One of our central interests was in Myczek and Simons’s
(2008) suggestion that only one or a few individual objects
need to be sampled in order to attain the performance of
human subjects in average-size discrimination tasks. The
group fit from the variance summation model in Fig. 4

Discrimination Threshold (*)
w
w

Ensemble bandwidth

Fig. 3 Results: Discrimination thresholds for the ensemble conditions
at each bandwidth, averaged across the 16 subjects. Error bars indicate
the standard errors of the means
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Fig. 4 Results and model: Discrimination thresholds for the ensemble
conditions at each bandwidth, with the curve that indicates the average
fit from the variance summation model

determined the estimate of 7.0 samples from each display.
Table 1 presents the number of samples and the internal
noise determined for each subject. An estimate of 7.0 sam-
ples per display exceeds the widely discussed (but not
uncontroversial) estimate of a three- to four-item object-
based limit of parallel attention (Oksama & Hyoni, 2004;
Pylyshyn & Storm, 1988; Scholl, 2001). This analysis sug-
gests that Myczek and Simons underestimated the number
of samples that subjects rely on in ensemble feature tasks of
average-size processing. One reason for their lower estimate

may be that their simulations did not take internal noise
(oine) Into account (Ariely, 2008; Haberman & Whitney,
2010). Estimating the internal noise that affects the process-
ing of ensemble average size was our second major focus.
If the representation of ensemble features relies on sam-
pling individual objects and then averaging them—and per-
haps throwing away the original samples (Alvarez, 2011;
Ariely, 2001)—then the internal noise (o;,) estimated by the
variance summation model should match the observed thresh-
olds for processing individual items. If, instead, the ensemble
pooling process relies on estimating scene statistics without
individuating items (e.g., perhaps through mechanisms similar
or identical to texture processing), then the internal noise that
affects this process may be distinct from the noise affecting
individual object representations. There has been some sug-
gestion in the literature that the internal noise affecting en-
semble averaging may be lower than the internal noise
affecting representations of individual items (Alvarez, 2011;
Alvarez & Oliva, 2008; Ariely, 2001; Chong & Treisman,
2003; Haberman & Whitney, 2009). Such suggestions were
motivated by evidence that the observed thresholds in an
ensemble averaging task tended to be lower than the observed
thresholds for identifying individual items. But, observed

Table 1 Fitted parameters from the variance summation model (two leftmost columns) and the internal noise values empirically measured in the

single-grating displays (two rightmost columns)

VSM Single grating
22 S¢2 2
s @m + 20 + =t
S & € s
Subject Ensemble Ensemble Periphery Fovea
# of sample Internal noise Internal noise Internal noise

J.H. 4.55 1.80 4.41 1.91

H.L 3.68 1.69 3.40 1.65
Sub3 7.86 247 3.08 2.15
Sub4 6.27 2.60 2.42 2.42
Sub5 9.86 1.54 6.74 1.89
Sub6 7.60 1.95 4.04 2.88
Sub7 2.61 1.92 4.85 2.14
Sub8 12.95 2.09 3.48 291
Sub9 8.60 1.58 443 1.25
Sub10 6.88 2.95 2.35 3.12
Sub11 4.78 2.24 4.08 2.20
Sub12 4.59 3.04 7.08 3.90
Sub13 16.85 1.08 2.53 1.07
Sub14 6.33 3.03 4.14 3.16
Sub15 3.56 2.64 3.07 3.00
Sub16 9.36 1.50 3.32 1.12
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thresholds can be lower due either to decreased internal noise
or to increased numbers of samples, and the previous work
was unable to disentangle the potential contributions of these
two sources. The variance summation model allows us some
handle on this question, as it allows us to measure the con-
tributions of each of these factors from performance within the
ensemble task itself.

We determined subjects’ thresholds for processing indi-
vidual gratings within both the fovea region and the periph-
ery. Internal noise for ensemble processing across the entire
display (Table 1) was significantly lower than the observed
thresholds for discriminating single gratings in the periphery
[¢(15)=4.77, p < .01] and marginally lower than the thresh-
olds for discriminating single gratings in the fovea [#(15) =
1.59, p = .13] (Table 1). Importantly, given the crowding
controls in our ensemble displays, only one or two gratings
could appear within the fovea region in ensemble displays—
the remaining gratings would have appeared in the periph-
eral region (see the screenshot cartoons in Table 1). Because
subjects relied on many more than one or two gratings
during the ensemble feature task (Table 1), in order to
approach the performance of the human subjects, any
object-based sampling strategy would need to assume
fovea-level noise across all sampled items, not just for the
one or two that happened to fall within the fovea region (or,
it would need to sample even more items than was sug-
gested by the variance summation model; Table 1). Because
the internal noise for representing individual gratings
increases as one moves into the periphery (e.g., note the
differences in the observed thresholds for the fovea and
periphery in Table 1), it would appear that subjects do not
rely on selecting and averaging individual gratings during
the ensemble feature task.

Thus, variance summation modeling of performance in
an average-size ensemble feature task suggests that the
number of samples required for ensemble processing is
greater than one or two items and that the internal noise
affecting ensemble processing is lower than the internal
noise for processing a single item presented in the periphery,
and marginally smaller than the internal noise for processing
a single item presented within the fovea.

Discussion

We systematically manipulated the external variability of
sizes within a set of sine gratings in an ensemble feature
task in order to empower variance summation modeling to
estimate the sample size (n) and internal noise (oy,) that
affect subjects’ processing of average-size information. We
also compared these estimates to the observed thresholds for
processing single gratings. We found that subjects appear to
rely on many more than one or two individual gratings when

@ Springer

representing the average size of items in an ensemble
(Table 1). We also found that the internal noise affecting
the ensemble process is slightly lower than the internal noise
that affects the representation of individual item sizes within
the fovea (Table 1). These results suggest that ensemble
processing relies on a mechanism that is distinct from the
processing of single items, and variance summation model-
ing provides a means for studying internal noise and sam-
pling procedures on the basis of performance within the
ensemble feature task itself. We discuss these results in light
of other recent modeling efforts.

Synthesizing our present study results with previous
work on ensemble processing that has relied on Monte
Carlo simulations provides greater insight into how sam-
pling and internal noise may affect ensemble processing.
Previous models (Haberman & Whitney, 2010; Myczek &
Simons, 2008) can be distinguished on the basis of whether
or not they included internal noise and whether the sampling
was assumed to be random with or without replacement. In
Fig. 5, we have placed these models in a 2 x 2 matrix that
delineates how they differ from each other. We simulated
each of these models in order to explore how observed
thresholds may change with sample size. Figure 6 displays
the average thresholds generated from a series of Monte
Carlo simulations for each of the models in Fig. 5. In
essence, these Monte Carlo simulations involve allowing a
computer program to perform the ensemble size discrimina-
tion task by taking a sample of the gratings present in each
display, applying or not applying internal noise to each
sample, and then averaging these samples to estimate the
average size of the display. Each simulation was a type of
ideal observer analysis, in that only external noise, sam-
pling, and internal noise could affect the model’s perfor-
mance—both the averaging process and the decision
process were assumed to be without errors and without
added noise (see also Haberman & Whitney, 2010;
Myczek & Simons, 2008). For each simulation, the model
completed 240 trials within the QUEST procedure, and
QUEST provided an estimated threshold for that run—that
is, the same methods that we used for the adults in
Experiment 1la.

Previous Monte Carlo modeling efforts have relied on the
internal noise for representing single items in order to

Implementation of Internal noise

Yes No

Haberman & Whitney, Myczek & Simons,

No 2010 2008

Sampling with
Replacement

Variance Summation
Yes Model (Dakin, 2001;
Current study)

No citation

Fig. 5 Comparison of existing models of ensemble processing
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= =\With noise & w/o replacement: Haberman & Whitney, 2010
==With noise & with replacement: V5M (Dakin, 2001; Current study)
= =W/o noise & w/o replacement: Myczek & Simons, 2008

==\/o noise & with replacement: no citation

Modeled Threshold (")

1 3 5 7 9 " 13 15 17 19 21 23
Number of samples

Fig. 6 Monte Carlo simulations: The average observed thresholds for
discriminating ensemble average size generated by Monte Carlo simu-
lations of existing models, with internal noise set to levels equivalent to
the 16 subjects’ single-grating thresholds and external noise set to o = 6°.
The gray-shaded region indicates the mean (center of region) and stan-
dard deviation of human performance across the 16 subjects from the
ensemble feature blocks at o = 6°

estimate the effects of sampling (Alvarez & Oliva, 2008;
Haberman & Whitney, 2010). For comparison, we took this
same approach and ran 16 simulations for each model,
fixing the external noise to 6° and fixing the internal noise
to the thresholds from the single-grating fovea blocks from
the 16 subjects in Experiment lb (note that the relative
ordering of performance for these models would remain
unchanged across all levels of internal noise >0, making
the selection of this parameter value somewhat arbitrary for
the present purposes). The curves in Fig. 6 represent the
observed thresholds averaged across the 16 simulations for
each model. The standard deviation in human performance
that we observed on these same trials for the ensemble
feature blocks with o = 6° is plotted (gray-shaded area),
centered on the mean for human performance. From the
simulations, it is clear that a major factor affecting the
models is whether or not internal noise is implemented.
When internal noise is included (e.g., Dakin, 2001;
Haberman & Whitney, 2010; present experiments), the
model’s performance gracefully declines through the range
of human performance. When it is not included (e.g.,
Myczek & Simons, 2008), the modeled threshold rapidly
declines and soon outstrips human performance. The simu-
lations in Fig. 6 also demonstrate the effects of sampling
either with (e.g., variance summation model: Dakin, 2001;
present experiments) or without (e.g., Haberman &
Whitney, 2010; Myczek & Simons, 2008) replacement,
though this effect is less dramatic than the effect of includ-
ing internal noise. The reduced thresholds observed for
sampling with replacement are due to the structure of the
arrays—which present subjects with a finite set from a
Gaussian distribution of sizes—in which sampling with
replacement allows a model to sample more frequently from

the more-frequent items close to the true mean. Such
effects will be reduced if the number of items in the
array increases or if the distribution of the array becomes
more uniform. Sampling with replacement is consistent
with the assumptions of the variance summation model
presented here, as well as with previous work in texture
processing in which what has counted as a sample need
not be a discrete individual object. In such cases, the
estimates of sample size generated by the variance sum-
mation model can be understood to be estimates of the
efficiency of the pooling process—for instance, in texture
processing, the estimates of sample size from the vari-
ance summation model have been understood as esti-
mates of the efficiency of evidence gathering, even
when no segmentable objects are present in the stimulus
(a collection of overlapping oriented Gabor patches;
Beaudot & Mullen 2005; Dakin, 2001). To the extent
that ensemble processing is similar to texture processing,
the sampling and internal noise that characterize ensem-
ble processing may be more similar to those of texture
discrimination than of individual-object segmentation. In
contrast, work from the ensemble feature literature has
often taken a sample to be one of the segmentable
objects within the ensemble and has implemented sam-
pling without replacement (e.g., Haberman & Whitney,
2010; Myczek & Simons, 2008). We believe that extract-
ing ensemble features may not rely on segmenting indi-
vidual items, but rather may rely on mechanisms more
similar to texture processing—a suggestion that has also
been made elsewhere (Balas, Nakano, & Rosenholtz,
2009; Dakin, Tibber, Greenwood, Kingdom, & Morgan,
2011; Freeman & Simoncelli, 2011; Haberman &
Whitney, 2010; Parkes et al., 2001).

While we have known for some time that the visual
system can discriminate textures and can also segment
individual objects from a background, ensemble feature
processing might seem to fall somewhere between these
two abilities and require pooling evidence across a
group of clearly distinct but similar-looking items—for
instance, representing the mean size, approximate num-
ber, average emotion (of faces), and centroid of multiple
items. Here, we have used variance summation model-
ing to estimate the internal noise and sampling that
affect ensemble processing. Because this method can
generate estimates of internal noise and sample size
from performance within the ensemble feature task it-
self, it has empowered the discoveries that subjects rely
on many more than one or two samples when process-
ing ensemble average size and that the internal noise
that affects average size processing is markedly lower
than the internal noise for processing a single item in
the periphery, and even somewhat lower than the inter-
nal noise for processing a single item in the fovea. This
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suggests that the mechanisms that support ensemble
average-size representation are distinct from those that
support our ability to segment and attend individual
items, but it remains to be determined whether these
ensemble mechanisms may be similar or identical to
those of texture processing.
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