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Abstract A simple and popular psychophysical model—
usually described as overlapping Gaussian tuning curves ar-
ranged along an ordered internal scale—is capable of accu-
rately describing both human and nonhuman behavioral per-
formance and neural coding in magnitude estimation, produc-
tion, and reproduction tasks for most psychological dimen-
sions (e.g., time, space, number, or brightness). This model
traditionally includes two parameters that determine how a
physical stimulus is transformed into a psychological magni-
tude: (1) an exponent that describes the compression or ex-
pansion of the physical signal into the relevant psychological
scale (β), and (2) an estimate of the amount of inherent vari-
ability (often called internal noise) in the Gaussian activations
along the psychological scale (σ). To date, linear slopes on
log–log plots have traditionally been used to estimate β, and
a completely separate method of averaging coefficients of
variance has been used to estimate σ. We provide a respectful,
yet critical, review of these traditional methods, and offer a
tutorial on a maximum-likelihood estimation (MLE) and a
Bayesian estimation method for estimating both β and σ
[PsiMLE(β,σ)], coupled with free software that researchers
can use to implement it without a background in MLE or
Bayesian statistics (R-PsiMLE). We demonstrate the validity,
reliability, efficiency, and flexibility of this method through a
series of simulations and behavioral experiments, and find the

new method to be superior to the traditional methods in all
respects.
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Coefficient of variance

One of the foundational challenges for psychology is to deter-
mine how the mind represents physical dimensions. After
more than a century of research, psychophysics—the study
of the relationship between external stimuli and internal sen-
sation—has converged on a simple model of internal repre-
sentations for most psychological dimensions (Cantlon, Platt,
& Brannon, 2009; Dehaene, 2003; Gescheider, 1997; Gibbon,
1991; Laming, 1986, 1997; Lu &Dosher, 2014; S. S. Stevens,
1964; Whalen, Gallistel, & Gelman, 1999). Under this model,
various dimensions (e.g., distance, time, number) across var-
ious senses (e.g., vision, taste, touch) are represented internal-
ly on continuous ratio scales, with regions of these scales
being activated in response to the intensity of a physical stim-
ulus. Sensory organs and early sensory processing can expand
or compress the signals from the world, and these signals are
often subjected to some corruption—typically described as
Gaussian internal noise. Though this classic model is by no
means complete (e.g., Luce, Steingrimsson, & Narens, 2010;
Steingrimsson & Luce, 2012), it remains highly influential
and is widely used in cognitive, comparative, and develop-
mental psychology, as well as neuroscience and computation-
al modeling.

This classic psychophysical model traditionally has two
parameters: (1) the degree of psychophysical scaling (e.g.,
the power law exponent β, variously named in the literature
as β, a, n, r, and slope; Laming, 1997; Stevens, 1964), which
is thought to reflect the underlying compression or expansion
of the external signal onto the internal scale (e.g., how the
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means of the Gaussian activations change with increasing
stimulus intensity), and (2) the inherent variability, or noise,
in the Gaussian activations along the scale, which linearly
scales with the mean (σ, also discussed in the literature as
CV, the Weber fraction, JND, or k; Laming, 1997).1

Intuitively, β maps to the central tendency of an experienced
Gaussian distribution (e.g., Bthat tone lasted around 3 s^), and
σ to the observer’s internal noise and confidence in this esti-
mate. As we discuss below, evidence for the underlying rep-
resentations being coded as Gaussian distributions has come
from a variety of sources, including single-unit recording and
fMRI (Jacob & Nieder, 2009; Nieder & Miller, 2004; Piazza,
Izard, Pinel, Le Bihan, & Dehaene, 2004; Tudusciuc &
Nieder, 2007).

Consistent with these two primary parameters, behavioral
performance across many different tasks obeys two key sig-
natures: Observers typically either under- or overestimate the
stimulus intensity (subject to β; Fig. 1) and show increasing
variability in responses to stimuli of higher intensities (subject
to σ; Fig. 1). For example, if observers are asked to estimate
the duration of a briefly presented tone, they typically slightly
underestimate the duration of each tone (e.g., say by 40ms for
a 100-ms tone; β ≈ 0.8), and show linearly increasing response
variability as the target duration increases (e.g., a standard
deviation of 2.8 for 100 ms; σ ≈ 0.07; Grondin, 2012). The
observed values for signal compression/expansion (β) and
response variability (σ) are different for different psychologi-
cal dimensions. For example, if observers are asked to esti-
mate felt pressure on the skin, they will typically overestimate
the intensity of tactile stimulation (e.g., 251 for 100 pounds of
pressure; β ≈ 1.2) and show less rapidly increasing response
variability as the target stimulation increases (e.g., standard
deviation of 7.53 for 100 pounds; σ ≈ 0.03; J. C. Stevens &
Mack, 1959). Thus, internal representations for a wide variety
of psychological dimensions can be described by simply vary-
ing the fitted values for β and σ.

Though it is not completely without criticism (Lockhead,
2004; Luce et al., 2010; Steingrimsson & Luce, 2012), this
psychophysical model has been productively used to describe
representations of most psychological dimensions (e.g., finger
spread, pressure on skin, auditory duration, visual number, felt
vibration, odor concentration, brightness, loudness, etc.; see
Fig. 1 and the citations therein). The values for β and σ across

different dimensions (e.g., pain, brightness, or time) have been
thoroughly explored, and these results have informed theories
of behavior and the underlying neural coding of these dimen-
sions (Dehaene, Izard, Spelke, & Pica, 2008; Gescheider,
1988, 1997; Lu & Dosher, 2014; Shepard, 1981). This simple
Gaussian model also successfully captures several psycho-
physical Blaws^—for instance, Weber’s law (Dehaene, 2003;
Dehaene & Changeux, 1993; Laming, 1997; Meck & Church,
1983; Stoianov & Zorzi, 2012) and scalar variability (Cordes,
Gelman, Gallistel, & Whalen, 2001; Gibbon, 1991; Whalen
et al., 1999). The model’s predictions have been explored
computationally (Dehaene & Changeux, 1993; Stoianov &
Zorzi, 2012; Verguts & Fias, 2004), developmentally (Droit-
Volet, Clément, & Fayol, 2008; Odic, Libertus, Feigenson, &
Halberda, 2013; Xu & Spelke, 2000), comparatively
(Brannon, Wusthoff, Gallistel, & Gibbon, 2001; Cheng,
Srinivasan, & Zhang, 1999; Piffer, Agrillo, & Hyde, 2011;
Platt & Johnson, 1971), and neurally (Nieder, 2005; Nieder
& Miller, 2004; Pinel, Piazza, Le Bihan, & Dehaene, 2004;
Roitman, Brannon, & Platt, 2007).

In recent decades, research in this area has increasingly
focused on individual differences in humans’ representations
of physical dimensions and the possible relationships between
such differences and broader cognitive abilities. For example,
expertise in racquet sports and golf modulates β (i.e., the
amount of underestimation) in distance perception (Chang,
Wade, Stoffregen, & Ho, 2008), whereas music expertise de-
creases σ in time perception (Grondin & Killeen, 2009;
Madison, 2014). Developmentally, the σ of approximate number
estimation improves with age (Halberda & Feigenson,
2008; Halberda, Ly, Wilmer, Naiman, & Germine, 2012;
Halberda, Mazzocco, & Feigenson, 2008; Odic et al., 2013),
and individual differences in σ correlate with math performance
prior to and after schooling, even when other cognitive and per-
ceptual abilities are controlled for (Halberda et al., 2008;
Libertus, Feigenson, & Halberda, 2011; Libertus, Odic, &
Halberda, 2012). Work in developmental psychology has
mapped changes in β and σ across development for several di-
mensions, including number and surface area (Odic et al., 2013),
and has shown that the precision of some dimensions continues
to improve even into adulthood (Halberda et al., 2012). Finally,
comparative psychologists have shown that nonhuman ani-
mals—including pigeons, guppies, monkeys, rats, and apes—
are able to approximate a variety of dimensions with β and σ
values quite similar to those of humans (Beran & Rumbaugh,
2001; Cantlon & Brannon, 2006; Meck & Church, 1983).

With the increased interest in measuring psychophysical
scaling (i.e., β) and internal variability (i.e., σ), along with
their relevance to research questions across many subdisci-
plines in psychology and neuroscience, there is also an in-
creased need for appropriate measurement tools. The most
common and extremely popular task used to measure either
β or σ is the magnitude estimation (ME) task. In this task, the

1 One challenge for scholarly research regarding these topics
is that the parameters of interest (i.e., signal compression–
expansion and internal variability) have been described in
various ways, using a variety of terms. Throughout, we refer
to these with the terms β and σ, though a reader who searches
the literature for mention of these terms would only find a few
articles. We recommend using the articles cited throughout the
main text as a bibliographic guide to the range of relevant
studies and phenomena.
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observer is presented with a physical stimulus of a particular
intensity (e.g., a 1,500-ms flash) and is asked to estimate its
value along a numeric scale. A closely related method has the
observer first see a numeric target value and then adjust the
stimulus intensity until the subjective experience matches this
value; this method is called magnitude production (MP).
Following either of these methods, the experimenter has ac-
cess to the relationship between the stimulus intensity physi-
cally present on each trial and the numeric value assigned to it
by the observer. By using this type of data, the experimenter
can estimate β or σ.

The most common analysis for estimating β is to plot the
target values on the x-axis and the observer’s reported values
on the y-axis, and then, typically via ordinary least squares,
estimate which power function fits the data best—that is, re-
sponse = intensityβ. The best-fitting power function is almost
always found by converting the axes into log–log values,

because a power function is linear in a log–log space, with
the linear slope being equivalent to β. This traditional log–log
method—which we call TradLog(β), for short—has been
prevalent in psychophysics since at least S. S. Stevens
(1957), and is widely used to estimate β even today (e.g.,
Crollen, Castronovo, & Seron, 2011; Huang & Griffin, 2014).

An entirely separate analysis method is typically used to
estimate σ. In both the ME and MP tasks, σ is estimated
through the coefficient of variation (CV): the standard devia-
tion of the observer’s responses, divided by the mean of their
responses. To calculate the CV, researchers measure both the
mean response and the standard deviation of responses at a
subset of the possible target values along a dimension. As a
result, the observer is asked to estimate or produce the same
target value many times over the course of the experiment (a
Brestricted-sampling^ design) in order to generate sufficient
data for measuring both the standard deviation and the mean

Fig. 1 Simulated behavioral
responses, based on norms from
the empirical literature for six
examples, demonstrating the
range of β (vertical) and σ
(horizontal) values for various
dimensions: finger spread
(Gaydos, 1958; S. S. Stevens &
Stone, 1959), pressure on skin (J.
C. Stevens & Mack, 1959),
auditory duration (Grondin,
2012), visual number (Krueger,
1984), felt vibration (J. C. Stevens
&Mack, 1959), and the odor of n-
amyl alcohol (Cain, 1977).
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response for each target value. An estimate of the CV is
calculated separately for each target value, and these CVs
are then averaged into a single, global CV (e.g., Cordes,
Gelman, Gallistel, & Whalen, 2001; Crollen et al., 2011;
Frank, Everett, Fedorenko, & Gibson, 2008; Grondin,
2012; Le Corre & Carey, 2007). To date, this restricted-
sampling method—repeatedly presenting the same target
values many times throughout the experiment—and com-
puting an average CV has been the only method for esti-
mating σ in ME and MP tasks. We term this method the
traditional CV averaging method for estimating σ—or
TradCV(σ), for short.

Although the two available analysis methods for estimating
β and σ have been productive and widely used, they are not
optimally designed. As we demonstrate in detail below, be-
cause these methods use separate analyses to estimate β and σ,
they fail to account for one parameter when measuring the
other, resulting in less reliable estimates that require many
trials to converge (see BPsiMLE(β,σ) is reliable across and
within subjects (simulated and behavioral data)^ and
BPsiMLE(β,σ) requires fewer trials to converge (simulated
data)^ sections). These two existing methods also limit the
kinds of experimental designs that researchers can use e.g., only
restricted-sampling designs, in which target values are repeated
many times, can be used for TradCV(σ); see BPsiMLE(β,σ) is
flexible across experimental designs (simulated and behavioral
data)^ section. The traditional methods also violate several sta-
tistical assumptions, including forcing researchers to use log-
normal residuals and not accounting for the heteroscedasticity
inherent in participants’ responses, both of which violate the
assumptions of standard linear regression. As a result, they are
not as reliable, sensitive, or flexible as modern parameter estima-
tion methods.

Here, we propose a different method for estimating β and σ
within a single analysis—the maximum-likelihood method—
or PsiMLE(β,σ), for short. This method simultaneously esti-
mates both β and σ and allows for freedom in the experimental
design, including designs in which each target value is
presented only once (i.e., Bunrestricted-sampling^ designs).
In comparing the PsiMLE(β,σ) method to the two traditional
methods [i.e., TradLog(β) and TradCV(σ)], we find that the
parameter estimates from PsiMLE(β,σ) are more precise and
more reliable, require fewer trials to converge, and do not
violate the assumptions for statistical tests. PsiMLE(β,σ) can
also be used to probe issues currently of interest in several
literatures, including determining whether the observers in
number and time estimation tasks rely on counting, and
whether scalar variability is violated for very low or very high
stimulus intensity ranges. For advanced users, we also provide
a Bayesian version of our method, allowing the incorporation
of priors and capitalizing on the many further advantages of
Bayesian data analysis, as compared to traditional frequentist
statistics.

In the BImplementing PsiMLE(β,σ)^ section, we provide a
basic outline of the PsiMLE(β,σ) method and its advantages
relative to the two traditional methods. Online, we also pro-
vide a guide to how the method can be used with freely avail-
able software (R-PsiMLE, which can be downloaded from
www.panamath.org/psimle/) and without any prior
understanding of maximum-likelihood estimation (MLE) or
R. This first section and the online guide are sufficient to allow
researchers to understand how the method works, how to im-
plement it in their own paradigms, and the basics of its advan-
tages. We also provide additional R and JAGS code—both
online and in the Appendix—for users familiar with these
software packages.

In the BExtending PsiMLE(β,σ) to test model violations^
section, we demonstrate an important extension of
PsiMLE(β,σ)—the ability for researchers to detect violations
of the typical model, including cases in which participants
counted number or time or in which scalar variability has
been violated. PsiMLE(β,σ) allows researchers to robustly
compare the standard model to these model violations, using
methods including Akaike information criteria (AICs), devi-
ance information criteria (DICs), likelihood ratios, Bayes
factors, and so forth.

In BEmpirical demonstration of PsiMLE(β,σ)’s advantages^
section, we provide extensive data—both simulated and
behavioral—supporting the validity, reliability, efficien-
cy, and flexibility of PsiMLE(β,σ).

Finally, in the Appendix, we demonstrate how the
PsiMLE(β,σ) method can be integrated into a Bayesian ap-
proach to data analysis. We also provide additional code for
using thePsiMLE(β,σ) method in R, in JAGS, and through the
free R-PsiMLE software. Although the Bayesian approach
holds several further advantages relative to the pure
maximum-likelihood approach, it also requires a greater de-
gree of mathematical and statistical sophistication than we
cannot expect of most readers. Thus, although we anticipate
that researchers in psychophysics, psychology, and neurosci-
ence will continue to turn to Bayesian data analysis over the
next 10 years, here we primarily focus on the maximum-
likelihood approach to measuring psychophysical scaling, as
this is an important first step beyond the currently dominant
traditional methods. We refer readers interested in the
Bayesian approach to the Appendix and to our guide online.

Implementing PsiMLE(β,σ)

Using the PsiMLE(β,σ) method is simple and can be done
with data from new designs as well as from traditional ME,
MP, and reproduction tasks—even those that were collected
prior to reading this. For most researchers, the only challenge
to using the method may stem from unfamiliarity with param-
eter estimation software and model selection. To alleviate
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these issues, we first describe how researchers can intuitively
understand PsiMLE(β,σ). Additionally, we have provided R-
PsiMLE, a free, user-friendly application that automatically
implements the method and requires no prior knowledge of
R, MLE, or Bayesian methods. R-PsiMLE is implemented in
Java and works on the Windows, MacOS, and UNIX plat-
forms. Interested researchers can download R-PsiMLE and a
step-by-step guide to using it from our website (www.
panamath.org/psimle/).

Basic overview of PsiMLE(β,σ)

The PsiMLE(β,σ) method is an implementation of a more
general MLE approach and, as such, relies on the idea of
probability/likelihood. If we assume—as the psychophysical
model described above does—that the observer makes a re-
sponse by taking a random sample from their internal
Gaussian activation generated by the experimentally present-
ed physical signal, then the set of behavioral or neural re-
sponses across trials will be a reflection of these internal dis-
tributions (i.e., subject to the observer’s personal β and σ).
Hence, we can ask: What is the most likely internal distribu-
tion that generated the participant’s observed samples?

To determine the most likely parameters of the internal
distribution given the observed responses, we require three
things: a parameterized model of the internal representations
(e.g., the psychophysical model with parameters β and σ), the
observer’s actual responses, and an optimization method that
estimates the most likely parameters from the responses.

As we reviewed above, the internal representations of most
psychological dimensions are modeled as a series of Gaussian
distributions that are defined by the amount of scale compres-
sion or expansion (β) and internal variability (σ). A third pa-
rameter—the scaling factor α—can be added to the model to
account for the units used in the task (e.g., seconds vs. minutes
vs. hours, in time estimation). PsiMLE(β,σ) includes this pa-
rameter, though most psychophysicists largely ignore it. Now,
if we assume that each response is a random draw from these
internal representations, we can use the participant’s observed
responses to determine the most likely values for β and σ.
Specifically, we can calculate the probability of each response,
given particular values for β and σ, and find the values of β
and σ that maximize the probability of observing these
responses.

As an example, let’s assume that the target values (e.g.,
length of lines, pounds of weights) presented to the observer
were {10, 10, 20, 20, 30, 30, 40, 40} and that the observer’s
responses were {6, 7, 11, 13, 15, 14, 17, 22}; this example, of
course, is for illustration only, and real data sets would have
many more trials and could be from any psychological dimen-
sion of interest. The psychophysical model states that each of
these responses is a random draw from a Gaussian distribution
with a mean of intensityβ and a standard deviation of

intensityβ × σ. If, for example, β = 0.80 and σ = 0.12, the
Gaussian distribution for the target value 10 would be
N(100.8, 100.8 × 0.12), or N(6.3, 0.75); responses around 6
would, therefore, be highly likely, with responses farther away
from 6 gradually becoming less and less so. Hence, we can use
the mathematics of normal distributions to calculate the prob-
ability of each response given particular values of β and σ. For
example, if we try β = 1.0 and σ = 0.2, the probabilities of
responses across these trials would be {.31, .27, .18, .12, .13,
.12, .09, .08}; but if we try parameter values that are closer to
the distribution that generated these samples (β = 0.8 and σ =
0.12), we get much higher probabilities for these responses:
{.48, .35, .30, .09, .22, .18, .11, .08}.

Formally, given the standard statistical i.i.d. assumption,
the likelihood function for the set of responses (e.g., 30 re-
sponses) would simply be the product of the probabilities of
the different responses (e.g., the probability of the first re-
sponse times the probability of the second times . . .). Since
the underlying model is Gaussian, we take the Gaussian prob-
ability density function and apply the mean α × Iβ and the
standard deviation (α × Iβ) × σ. The resulting likelihood func-
tion of the observer’s responses (Obs) across n trials is thus:

ℒ β; σ;αjObs; Ið Þ

¼ ∏
n

i¼1

1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2π α*Iβi *σ
� �2

r exp −
1

2 α*Iβi *σ
� �2 * Obsi−α*Iβi

� �2

0

B

@

1

C

A

:

Note that this description assumes the typical and conve-
nient (if unlikely) assumption that the internal signal directly
maps to a response without any intervening and distorting
process (Gescheider, 1988; Shepard, 1981). Finally, note that
the assumption of Gaussian error is not just the standard as-
sumption in the field, but has been empirically validated in
terms of both behavior (Cordes et al., 2001; Platt & Johnson,
1971; Whalen et al., 1999) and patterns of neural firing
(Nieder & Miller, 2004; Piazza et al., 2004; Tudusciuc &
Nieder, 2007).

Given that we can generate a combined probability for
any given values of β and σ, we can use an optimization
algorithm to find the most likely values (i.e., the
maximum-likelihood estimate). This is done by finding
the values of β and σ that produce the highest likelihood
of the observed data (i.e., that make the observed data
most probable). Note that, to simplify computations of
products into sums and to work with most modern opti-
mization software, statisticians typically take the negative
log of the function above; this log transformation only
changes the likelihood function into a negative log-
likelihood function, permitting the summing of log proba-
bilities, and does not transform the data (Myung, 2003).
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Finding the most probable parameters in this model (i.e.,
the ones that minimize the negative log-likelihood) is usu-
ally done through an optimization procedure that simulta-
neously estimates all parameters. Our preferred software
for this is R (through the nlminb optimizer), because it
is free and efficient, though alternative software, such as
MATLAB, can perform this task as well.

Notice that, unlike the TradLog(β) and TradCV(σ)
methods, the MLE approach outlined here uses all available
participant responses to simultaneously estimate both β and σ.
As we discuss below, this gives PsiMLE(β,σ) a higher degree
of efficiency, reliability, and precision, because the estimates
of one parameter (e.g., σ) can significantly impact the estima-
tion of the other (e.g., β). Furthermore, because PsiMLE(β,σ)
combines likelihoods across different target values, this meth-
od also allows us to estimate the parameters without repeating
target values (e.g., we could choose to present each target
value only once). This is in strong contrast to TradCV(σ),
which requires multiple trials at a single target value in order
to calculate a mean and SD at each target value.

In the Bayesian approach, we further add information
about our prior expectations about how β and σ should be
distributed in our population of study. For example, on the
basis of prior research with over 10,000 participants, we can
expect the σ values of typical college-aged students
performing an approximate-number task to be normally (or
log-normally) distributed with a mean of 0.26 and a standard
deviation of 0.04 (Halberda et al., 2012). By specifying this
additional information, estimating β and σ is further en-
hanced—allowing for a more accurate estimate with fewer
data points. The Bayesian approach holds a number of other
advantages, since it allows us to specify true credibility inter-
vals, allows us to predict future values, and provides for more
robust model comparisons (Kruschke, 2011). Further details
on the Bayesian approach are provided in the Appendix.

Advantages of PsiMLE(β,σ) over traditional methods

The advantages of the PsiMLE(β,σ) method come from two
sources: the general advantages of MLE over ordinary least-
squares regression, and the specific advantages of simulta-
neously estimating β and σ without having to repeat target
values. These advantages are further enhanced when
PsiMLE(β,σ) is combined with a Bayesian approach, espe-
cially in situations in which we have good information on
the prior distributions.

There is an increased interest in using MLE methods for
parameter estimation in cognitive psychology and psycho-
physics (for reviews and basic tutorials on MLE, see
Kruschke, 2011; Kuss, Jäkel, & Wichmann, 2005; Myung,
2003; Wichmann & Hill, 2001). A cursory look at other sci-
entific and engineering disciplines—in which the phenomena
of interest often comply with power laws and also display

linearly increasing variability with time or value (e.g., eco-
nomics, physics)—reveals that MLE has for decades been
the estimator of choice (Clauset, Shalizi, & Newman, 2009;
Donkin & Van Maanen, 2014; Gabaix, 2008; Myung, 2003),
with most of these fields continuing to expand into Bayesian
methods. MLE provides several advantages over ordinary
least-squares estimation: (1) Unlike ordinary least squares,
MLE is a general-purpose estimation that can be straightfor-
wardly applied to nonlinear regression (e.g., S. S. Stevens’s
power law); (2) unlike ordinary least squares, MLE can easily
accommodate nonconstant variance (e.g., heteroscedasticity,
scalar variability); (3) MLE provides a straightforward and
principled way of constructing confidence intervals; (4)
MLE can be used for excellent model comparison and model
selection through the AIC or Bayesian information criterion
(BIC), a point we will discuss in BExtending PsiMLE(β,σ) to
test model violations^ section; (5) MLE can be easily imple-
mented in a variety of free software packages, including R;
and (6)MLE provides several highly desirable statistical prop-
erties, including maximal efficiency for nonlinear regression2

(for discussion on all of these points, see Myung, 2003).
PsiMLE(β,σ) also provides additional practical advantages

over the TradLog(β) and TradCV(σ) methods. We will empiri-
cally demonstrate these advantages with simulated and real data
in BEmpirical demonstration of PsiMLE(β,σ)’s advantages^
section:

PsiMLE(β,σ) can be flexibly applied to a range of experimen-
tal designs (BPsiMLE(β,σ) is flexible across experimental
designs (simulated and behavioral data)^ section) Because
the method does not require the repetition of the same target
values (i.e., restricted sampling), it can be used both in exper-
iments in which each target value is unique or repeated (i.e.,
unrestricted sampling) and in designs in which the presented
target values are optimally adjusted during the experiment to
maximize the parameter estimation procedure (i.e., adaptive
sampling, such as in QUEST and PEST; Lesmes, Jeon, Lu, &
Dosher, 2006; Treutwein, 1995; Watson & Pelli, 1983). The
method also generates an entire probability distribution
modeling the participant’s internal representations, thus
allowing for predicting responses to target values not present-
ed. Although PsiMLE(β,σ) can also be applied to a restricted-

2 It is currently controversial whether MLE provides more
consistent and more efficient estimates than all versions of
least-squares analyses (e.g., weighted least squares). Hence,
our claim is not thatMLE is always superior in all situations to
least squares (in fact, in regular linear regression, MLE is
consistent but biased with low number of trials; Clauset,
Shalizi, & Newman, 2009; Gabaix, 2008). Instead, our focus
is only in the context of the standard psychophysical model, in
which the characteristics of MLE are superior to those of
ordinary least-squares regression.
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sampling design, there are numerous disadvantages to this
design, including that observers form anchoring and adjustment
strategies from experiencing the same target values repeatedly
(see BPsiMLE(β,σ) is flexible across experimental designs
(simulated and behavioral data)^ section).

PsiMLE(β,σ) provides more reliable estimates with
fewer trials (BPsiMLE(β,σ) is reliable across and
within subjects (simulated and behavioral data)^
and BPsiMLE(β,σ) requires fewer trials to converge
(simulated data)^ sections) Because each data point con-
tributes to the global estimate of the parameters, PsiMLE(β,σ)
can simultaneously and more reliably estimate the parameter
values with fewer trials (in some simulations, we need only a
third of the trials needed for the traditional methods). This is
especially important when testing special populations who can-
not sit through long experiments (e.g., children or elderly
adults) and when testing populations with highly variable re-
sponses (e.g., observers suffering from dyscalculia or
Williams’s Syndrome; Libertus, Feigenson, Halberda, &
Landau, 2014; Mazzocco, Feigenson, & Halberda, 2011;
Piazza et al., 2010).

PsiMLE(β,σ) can be used to test for violations of the standard
psychophysical model (BExtending PsiMLE(β,σ) to test
model violations^ and BPsiMLE(β,σ) can detect violations
of the standard psychophysical model (simulated data)^
sections) Researchers are often interested in examining
whether behavioral data are fit better by the standard psycho-
physical model or by a different model (e.g., one in which
observers counted or in which σ discontinuously changes in
low or high intensity ranges). The PsiMLE(β,σ) method can
test for this by comparing the likelihood of the standard psy-
chophysical model to the likelihood of a nonstandard model.
Importantly, by using a variety of modern model comparison
tools—including the AIC, DIC, Bayes factor, and so forth—
researchers using the PsiMLE(β,σ) method can determine the
more probable model while controlling for the higher number
of free parameters in many nonstandard models.

Extending PsiMLE(β,σ) to test model violations

Recently, interest has increased in examining and measuring
violations of the standard psychophysical model. Two viola-
tions have been of especially high interest: whether the partic-
ipants counted, rather than estimated, the stimulus presented
(Cordes et al., 2001; Frank et al., 2008; Grondin, Meilleur-
Wells, & Lachance, 1999; Odic, Le Corre, & Halberda, 2015)
and whether the σ value changes with high or low intensities
(Bizo, Chu, Sanabria, & Killeen, 2006; Grondin, 2012;
Lejeune & Wearden, 2006; Wearden & Lejeune, 2008). For
example, in the time literature, evidence for changes in the σ

value have been used as evidence for multiple independent
clock mechanisms, each for a different scale of duration
(Gibbon, Malapani, Dale, & Gallistel, 1997; Grondin, 2012;
Lewis & Miall, 2009).

In this section, we demonstrate how PsiMLE(β,σ) can be
easily extended to test whether a participant’s responses
showed either of these violations and how modern model
comparison methods can be used to test for each participant
whether the standard or the violation model is more likely to
have generated the responses. Advanced model comparison is
especially important in this literature, because many nonstan-
dard models have more free parameters than the standard
model. As a concrete example, we also empirically dem-
onstrate that PsiMLE(β,σ) is a more sensitive measure for
deciding whether or not each individual participant
counted instead of estimated (BPsiMLE(β,σ) can detect
violations of the standard psychophysical model (simulated
data)^ section).

Checking whether observers counted

A prominent problem in both the time and number estimation
literatures is the possibility that observers subvocally counted
during the task. Cordes and colleagues (2001) have demon-
strated that σ values, as estimated by the CV, can differentiate
counting from noncounting responses: If the observer is
counting, the variability is not scalar, but binomial, and the
response variability does not increase linearly with target val-
ue, but as a square root of target value. As a result, CV esti-
mates decrease linearly with increasing target value whenever
observers count (ideally, they decrease with a slope of –0.5 in
log–log plots), whereas they remain constant when observers
do not count (cf. Figs. 2A and C for a visual example of
noncounting vs. counting data). This finding has been con-
firmed for both time (Grondin et al., 1999) and number
(Cordes et al., 2001), and may explain several deviations from
Weber’s law in the time literature for the longer durations at
which counting is possible and advantageous (Lewis &Miall,
2009). Hence, when using the traditional methods, researchers
have checked for counting by testing whether the slope of CV
values across target values is significantly below 0 (Cordes
et al., 2001; Le Corre & Carey, 2007).

An improved method for identifying counting-dependent
responding becomes possible within PsiMLE(β,σ)—that is,
determining (via the AIC, DIC, or Bayes factor) whether the
data are fit better by the standard (noncounting) psychophys-
ical model or by the counting model, or whether there is in-
sufficient evidence to adjudicate between them. The likeli-
hood function of the counting model alters the standard devi-
ation of the Gaussian model to increase by the root of target
value (α × Iβ)1/σ. Once fit, the model can be compared via
AIC/DIC/Bayes factor to the standard psychophysical model.
This approach holds numerous advantages over the traditional

Behav Res



one, including that it is more sensitive to catching counters
and can be applied to individual observers, instead of only to
entire groups of participants (BPsiMLE(β,σ) can detect
violations of the standard psychophysical model (simulated
data)^ section).

In the R-PsiMLE software, researchers can select whether
they want to test the counting model against the standard model,
and the output will include, for each observer, the parameter
estimates for the standard and counting models, along with the
AIC/DIC difference. If specified, the output will also include a
graph of the data and the countingmodel so that visual inspection
can further help researchers decide whether the counting model
was appropriate. We stress, however, that to prevent false alarms,
this analysis should be theoretically motivated (e.g., there should
be independent reasons to suspect that a counting strategy may
have been likely) and should not be applied blindly.

Checking whether σ is different for high or low intensities

The standard psychophysical model requires that the standard
deviation of the Gaussian distributions increase linearly with

target intensity. However, this assumption has occasionally
been challenged in the literature—for instance, with different
σ values being observed in extremely low and extremely high
intensity ranges (see, e.g., Fig. 2D for a visual example of a
change in σ). For example, in time perception research, it has
often been shown that subsecond time perception is subject to
a different σ than is time perception for durations over 1 s
(Bizo et al., 2006; Grondin, 2012; Grondin et al., 1999).
Such results suggest that different mechanisms of time per-
ception may apply at different duration ranges, which remains
an empirical question of great interest. Similar arguments have
been made in the number literature for values above and be-
low 20 (Durgin, 1995).

To test for this possibility, we can specify a model that takes
a Bpoint of discontinuity^ (e.g., 1 s, 20 dots) and estimates a
separate σ for target values and responses on each side of this
point. Subsequently, this discontinuous model can be com-
pared to the standard one, which assumes an identical σ
throughout the range, via an AIC or DIC difference. The
AIC/DIC method is especially apt for this research question,
because the discontinuous model has more free parameters

Fig. 2 Four patterns of responses
that researchers should be wary of
and use nonstandard models for.
(A) Expected pattern of responses
given the standard model (notice
the increasing spread, consistent
with scalar variability). (B)
Expected pattern of responses if
observers are purely guessing
around a response; in these
situations, β will be 0 and σ is not
interpretable. (C) Expected
pattern of responses if the
observer is counting; notice that
there is too much variability in
low target values and too little
variability in the high target
values, consistent with binomial
variability. (D) Expected pattern
of responses if σ changes at low
versus high target values; notice
the Bpinch^ around target value
30, indicating a suddenly
changing σ
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and, hence, should require more evidence in its favor for it to
be likely.

R-PsiMLE allows researchers to test for violations of scalar
variability by specifying the point of discontinuity (the point
should be chosen in light of theory or previous work or by
visually inspecting the outputted graphs). The output file will
then provide the estimated parameters for the standard model
and the discontinuous model, the AIC/DIC difference, and
whether either of the models is more likely. If specified, the
output will also include graphs of the data and of the model
with changing σ, so that visual inspection can further help
researchers decide whether the model was appropriate and
what the possible point of discontinuity could be.

Empirical demonstration of PsiMLE(β,σ)’s
advantages

In this section, we empirically quantify five major advantages:
(1) PsiMLE(β,σ) is a valid estimate of the two psychophysical
parameters; (2) PsiMLE(β,σ) is more flexible—it can be used
in both restricted- and unrestricted-sampling as well as
adaptive-sampling procedures; (3) PsiMLE(β,σ) produces a
more reliable measure than the traditional methods given a
wide range of actual β and σ values; (4) PsiMLE(β,σ) is more
efficient, allowing researchers to get reliable estimates with
fewer trials; and (5) PsiMLE(β,σ) can be used to adjudicate
between competing models, including identifying observers
who counted.

We empirically demonstrate these advantages with both
simulated and real data. Simulations allow us to validate
PsiMLE(β,σ) in ideal circumstances, and to examine the
method’s performance in contexts that are not experimentally
or practically testable (e.g., upward to 2,000 trials, or across
very wide ranges of true β and σ values). Additionally, be-
cause the true parameter values are known in the simulations,
we can estimate error rates of both the maximum-likelihood
method and traditional methods. We provide simulations for
both restricted- and unrestricted-sampling designs to demon-
strate the flexibility of PsiMLE(β,σ). The technical details of
the simulations are presented in BSimulation and behavioral
methods^ section, but can be skipped without loss of
readability.

We also assessed the performance of PsiMLE(β,σ) in real-
world settings. This is done in three experimental tasks: a
number magnitude estimation task, a number magnitude pro-
duction task, and a time reproduction task. In all three, we
directly compare parameter estimates generated by
PsiMLE(β,σ) to estimates generated by the traditional analysis
methods, TradCV(σ), TradLog(β). The similarities in param-
eter estimates from real behavioral data demonstrate the valid-
ity of PsiMLE(β,σ) and its ability to replace traditional
methods, and split-half tests reveal that PsiMLE(β,σ) is more

reliable than the traditional analysis methods. All of these
results would also hold true in the Bayesian approach to
PsiMLE(β,σ).

Simulation and behavioral methods

In simulations, we programmed observers whose internal rep-
resentations are generated from the standard psychophysical
model described above. We systematically varied the β and σ
for every simulated observer in order to determine how both
PsiMLE(β,σ) and traditional methods perform across a variety
of values. In each simulation, 500 simulated observers were
made for every combination of β and σ, which generated
responses to a series of trials on which target values were
shown. To remain dimension-neutral, we will refer to the sim-
ulated target values as Bunits^; the reader is welcome to as-
sume that these units refer to any specific unit, including sec-
onds, concentration of liquid, finger span, number of objects,
and so forth. The simulated observer had to generate a re-
sponse on each trial by drawing a random sample from a
normal distribution with μ = α × Iβ, and σ = μ × σ. Once all
of the responses were generated, we applied both the tradi-
tional methods—that is, TradCV(σ) and TradLog(β), and
PsiMLE(β,σ) to estimate both β and σ.

Because measurement error will naturally be higher as data
variability increases (i.e., with higher σ), we calculated esti-
mation error in two ways. Because σ is bound at 0, our pri-
mary measure of error in estimating σ was the percent error
from true value (i.e., |estimated – true|/true); this gives us an
additional advantage of quantifying error independent of the
growing variability (σ). But, because β is both positively and
negatively unbounded, our primary measure of error in esti-
mating βwas the absolute error from true value (i.e., |estimat-
ed – true|).

We ran two types of experimental designs. In the restricted-
sampling design, the simulated observers were presented with
a set of four target values (10, 20, 30, and 40 units). This
design is the most popular design for both ME and MP tasks
throughout the literature, and is the only design that the
TradCV(σ) method can be applied to. Hence, the restricted-
sampling design simulated the traditional experimental para-
digm for estimating β and σ, and had observers repeatedly
respond to the identical four target values (note that in these
simulations, we did not simulate any response biases that may
arise in human and animal observers in response to repeated
sampling).

In the unrestricted-sampling design, the simulated ob-
servers were presented with values drawn from a uniform
distribution between 20 and 40 units. The unrestricted-
sampling procedure is an experimental design that should re-
duce real human observer bias and improve parameter estima-
tion. But, the TradCV(σ) method cannot be applied to this
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methodwithout binning responses into ad hoc categories (e.g.,
target values between 20 and 30).

In the simulations, βwas set to 0.6, 0.8, 1.0, 1.2, or 1.4, and
σ was set to 0.01, 0.05, 0.10, 0.15, 0.20, 0.30, 0.40, or 0.50.
We also ran simulations with different numbers of trials: 20,
40, 60, 120, 240, 320, 400, or 800 trials. For each combination
of β, σ, and number of trials, we ran 500 simulated observers.

Note that due to the very high number of simulations (n =
160,000 for each design), the reported differences between
mean errors were always significantly different at p < .05;
hence, we do not report significance statistics and, instead,
report the means and SD values.

To assess the validity of PsiMLE(β,σ) in estimating param-
eters for real human observers in magnitude estimation (ME)
and magnitude production (MP) tasks, we gave 40 naïve ob-
servers a number ME task (Human Exp. 1) and a separate
group of 40 naive observers a number MP task (Human
Exp. 2). In the ME task, observers saw a briefly flashed set
of dots on the screen and had to estimate their number. Similar
methods have been used extensively to assess human abilities
to estimate numerosity (Cordes et al., 2001; Crollen et al.,
2011; Izard & Dehaene, 2008; Krueger, 1984; Whalen et al.,
1999). In the MP task, observers were shown an Arabic digit
on the screen and had to tap the BL^ button that number of
times while rapidly repeating the word Bthe^ to prevent verbal
counting. Similar methods have been used extensively to as-
sess human abilities to produce approximate numerosities
(e.g., Cordes et al., 2001). For each task (i.e., ME, MP), half
of the participants took part in a restricted-sampling design
(i.e., the target values 9, 13, 17, and 21 were repeated multiple
times), and half took part in an unrestricted-sampling design
(i.e., the target values were freely sampled from a uniform
distribution between 5 and 25). Each participant performed
60 trials.

To demonstrate the validity of the PsiMLE(β,σ) method in
magnitude reproduction tasks, we also presented ten naive
observers with a time reproduction task (Human Exp. 3). On
each trial, the observer heard three equally spaced tones that
each gave an example of the target duration, which was drawn
from a uniform distribution ranging between 500 and 1,
300 ms. After hearing the three tones, the observer pressed
the spacebar to begin the reproduction and the spacebar again
to end it in an attempt to match as closely as possible the
duration they had heard during the first three tones. The task
consisted of 60 trials. Grondin (2012) administered this same
task using the restricted sampling design and found σ values
[as estimated by TradCV(σ)] to be around 0.07 for the range of
1,000–1,900 ms. Although β values were not reported, they
could be estimated from Fig. 3 in Grondin (2012) to be around
0.80. In the present experiment, we gave observers the same
task as in Grondin (2012), but extended this approach to esti-
mate both β and σ values using PsiMLE(β,σ) in an
unrestricted-sampling design.

PsiMLE(β,σ) generates valid estimates of β and σ
(simulated and behavioral data)

The validity of the PsiMLE(β,σ) method, can be dem-
onstrated in two ways: theoretical face validity (i.e., the
method directly reflects the underlying psychophysical
model) and practical construct validity (i.e., the
method’s error in estimating parameters is convergent
with but smaller than traditional methods).

PsiMLE(β,σ) transparently follows from the underlying
psychophysical model; in effect, given the model’s assump-
tion that the observer draws samples from their continuous
internal Gaussian distribution specified by both β and
σ, the method does the inverse and estimates the most
likely continuous internal Gaussian distribution given
the samples. Relatedly, unlike the two traditional
methods, TradCV(σ) and TradLog(β), PsiMLE(β,σ) si-
multaneously estimates both β and σ and uses the one
parameter’s value to aid in estimating the other; in this
way, it is more true to the underlying psychophysical
model, which always requires both parameters.

Practically speaking, PsiMLE(β,σ) shows validity in both
simulated and real data. Because the TradCV(σ) method re-
quires a restricted sampling design, we first report data from
simulations and experiments that implemented this design;
data from the unrestricted-sampling design is presented
in BPsiMLE(β,σ) is flexible across experimental designs
(simulated and behavioral data)^ section to demonstrate
the flexibility of PsiMLE(β,σ).

Simulated data Averaged across all simulations, the absolute
error in estimating β with PsiMLE(β,σ) was 0.029 (SD =
0.045), demonstrating that the method can successfully esti-
mate β. This error was significantly lower than that for esti-
mates derived from the TradLog(β) method (M = 0.046, SD =
0.083). This advantage is due to the superior estimates that can
be made on β once information about σ is considered within
theMLE framework ofPsiMLE(β,σ). There was no difference
in absolute errors as the true β changed (although, as we dem-
onstrate in BPsiMLE(β,σ) is reliable across and within
subjects (simulated and behavioral data)^ section, there
was as σ changed).

Averaged across all simulations, the percent error in esti-
mating σ with PsiMLE(β,σ) was 6.3 % (SD = 10.7 %) of true
σ, demonstrating that PsiMLE(β,σ) can successfully estimate
σ. This error was significantly lower than that for estimates
derived from the TradCV(σ) method (M = 8.1 %, SD =
11.7 %). The percent error for estimating σ with PsiMLE(β,
σ) remained at a constant 6 %–7 % throughout the range of
true σ values.

Together, the results from the simulations suggest that
PsiMLE(β,σ) shows valid and more precise estimates than
those from the traditional methods.
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Behavioral data Next, we turn to the data from real ob-
servers; because we did not know their true parameter values,
we used correlations between the parameter estimates derived
from PsiMLE(β,σ) and the traditional methods, TradLog(β)
and TradCV(σ), to assess the convergent validity of the esti-
mates derived from PsiMLE(β,σ)—that is, PsiMLE(β,σ) mea-
sures the same things that the traditional methods were de-
signed to measure. Once again, we only compared estimates
from the restricted-sampling design. In the number ME task
(Human Exp. 1), the average estimated βs were near identical
for PsiMLE(β,σ) (M = 0.84, SE = 0.07) and the TradLog(β)
method (M = 0.83, SE = 0.06), and the average estimated σs
were identical for PsiMLE(β,σ) (M = 0.18, SE = 0.02) and the
TradCV(σ) method (M = 0.18, SE = 0.02). The convergent
validity between these estimates was very high (rs = .98 for
both β and σ). These results were replicated in the numberMP
task (Human Exp. 2) for both the estimated β [PsiMLE(β,σ):
M = 1.10, SE = 0.03; TradLog(β): M = 1.09, SE = 0.03] and
the estimated σ [PsiMLE(β,σ): M = 0.12, SE = 0.01;
TradCV(σ): M = 0.12, SE = 0.01]; again the convergent va-
lidity was high (r = .97 for β and .99 for σ). All of these

estimates, including the difference in under- versus overesti-
mation inME andMP tasks (i.e., β < 1 in theME task, and β >
1 in the MP task), are consistent with previous estimates in the
literature (Crollen et al., 2011; Krueger, 1984).

PsiMLE(β,σ) is flexible across experimental designs
(simulated and behavioral data)

Thus far, we have only shown data from the restricted-
sampling design; this choice was made because the
TradCV(σ) method can only be applied to this design. But
one of the major advantages of PsiMLE(β,σ) is that it can also
be applied to the unrestricted-sampling designs. This experi-
mental design has numerous advantages, including reducing
the response biases, such as anchoring and adjustment, that
may come from a repetition of identical target values through-
out the course of the experiment. Here, we demonstrate the
flexibility of the PsiMLE(β,σ) method both in simulations
(i.e., the average estimation error in unrestricted sampling is
small) and in real data (i.e., the estimates from unrestricted
sampling match those from restricted sampling). Finally, we

Fig. 3 Estimation errors as the
true σ increases in both restricted-
sampling (top) and unrestricted-
sampling (bottom) designs.
PsiMLE(β,σ) is superior to the
traditional methods (i.e., produces
lower error) in all four plots
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demonstrate that, in the real data, there is a significantly higher
amount of response bias in the restricted-sampling method.

Simulated data Averaged across all unrestricted-sampling
design simulations, we found that the PsiMLE(β,σ) absolute
error in estimating β was small (M = 0.042, SD = 0.065) and
lower than the absolute error of the TradLog(β) method (M =
0.063, SD = 0.12). Because the TradCV(σ) method cannot be
applied to an unrestricted-sampling design, we attempted to
find best estimates by binning the randomly chosen values; we
attempted several binning methods, and found that the best
performance was achieved by binning target values into five
equivalently sized bins. Averaged across all simulations, the
PsiMLE(β,σ) percent error in estimating σ was 6.5 % (SD =
10.7 %) and was significantly lower than the error for
TradCV(σ) applied over the binned data (M = 24 %, SD =
34.6 %). These extremely high error rates in the TradCV(σ)
method came about because the optimal number of bins
strongly depends on the true σ value (e.g., when the true σ is
low, having few bins makes it appear that response variability
is much greater than it really is). Practically speaking, this
implies that the binning method cannot be reliably implement-
ed in actual experiments, because the optimal number of bins
will strongly depend on the parameter one is trying to
estimate.

Behavioral data In the number ME task, the average values
estimated in the unrestricted-sampling design by the
PsiMLE(β,σ) method were near identical to those from the
restricted-sampling design, with an average σ of 0.17 (SE =
0.01) and an average β of 0.87 (SE = 0.04), with a high con-
vergence between the PsiMLE(β,σ) and TradLog(β) estimates
for β (r = .99). The identical pattern of results was found in the
number MP task, with an average σ of 0.13 (SE = 0.007), an
average β of 0.98 (SE = 0.019), and high convergent validity
(r = .99).

In the unrestricted-sampling time reproduction task, the
average β estimated by the PsiMLE(β,σ) method was 0.71
(SE = 0.02), a value slightly, though nonsignificantly, lower
than the 0.80 seen in Grondin’s (2012) figure. The σ values
estimated by the PsiMLE(β,σ) method ranged between 0.06
and 0.14, with an average of 0.089 (SE = 0.008). These values
are extremely similar to those found in Grondin (2012), and
demonstrate the validity of the PsiMLE(β,σ) method in
unrestricted-sampling designs for time reproduction.

Bias in restricted sampling To examine whether observers
really produce higher bias in the restricted-sampling design,
we reexamined the numberMP andME data for which we had
both restricted- and unrestricted-sampling data sets. We de-
fined bias via the Kolmogorov–Smirnov method as any devi-
ation from the expected distribution of responses, given the
underlying psychophysical model. Previous work has

suggested that restricted-sampling designs are prone to bias,
in that participants show sequential and anchoring effects (for
reviews, see Podsakoff, MacKenzie, Lee, & Podsakoff, 2003).
Thus, given each person’s σ and the trials presented during the
experiment, we can estimate the expected distribution of re-
sponses (which should be normal and use all available num-
bers) and compare it to the actual distribution given by the
participant. We measured bias as the absolute difference be-
tween the expected and response distributions (i.e., the closer
to 0, the less biased individual participants were, since their
responses conformed to the expected normal distribution). We
chose this metric because it allows us to collapse across a
variety of biases into a single metric. This bias metric reflects,
for example, response skew, kurtosis, avoidance of or affinity
for specific response bins (e.g., a preference to report round
numbers—e.g., Bten^), and so forth. We operationalized the
question of whether restricted sampling led to increased bias
in answers by asking whether bias was significantly higher in
the restricted-sampling than in the unrestricted-sampling
designs.

In the ME task, observers responding in the restricted-
sampling design produced significantly higher bias (M =
1.42, SE = 0.10) than in the unrestricted-sampling design (M
= 1.16, SE = 0.07), t(19) = 2.13, p < .05. The main source of
bias in the ME task was participants using too many round
numbers (e.g., 10, 15, and 20).

In the MP task, observers responding in the restricted-
sampling design produced a significantly higher bias (M =
1.23, SE = 0.09) than in the unrestricted-sampling design (M
= 0.89, SE = 0.03), t(19) = 5.01, p < .001. The main source of
bias in the MP task appears to be an overproduction of similar
values (perhaps as a result of rhythmically tapping the same
values multiple times), though the values that participants
converged on varied widely from individual to individual.

Together, these results demonstrate that restricted sampling
produces higher levels of bias and confirms previous sugges-
tions in the literature regarding the effect of repeating target
values on the observer’s responses (Tune, 1964). Given that
the PsiMLE(β,σ) method is the only one that can estimate σ in
an unrestricted-sampling design, this is another reason to pre-
fer it over the TradCV(σ) method.

PsiMLE(β,σ) is reliable across and within subjects
(simulated and behavioral data)

Because PsiMLE(β,σ) simultaneously estimates both β and σ,
and because each trial contributes to a global estimate of both
parameters, we should expect that its estimates would be more
reliable and accurate than those based on the traditional
methods. Here we demonstrate the method’s reliability in
two ways. In simulated data, we show that the method has
high reliability across a wide range of true β and σ values;
this is especially important given that many populations of
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interest (e.g., children, lesioned animals, or dyscalculics) show
high σ values, with higher variability in σ across time and
contexts (Mazzocco et al., 2011; Piazza et al., 2010). In actual
data, we demonstrate that the PsiMLE(β,σ) method shows
high within-subjects reliability.

Simulated data Error in estimating β and σ did not vary with
the true β values for both the TradLog(β) method and the
PsiMLE(β,σ) methods.

Behavioral data To assess the reliability of parameter esti-
mates in real data, we examined Spearman–Brown-corrected
random split-half reliabilities; if the methods were perfectly
reliable and the participants were stable in their behavior, we
should find correlations of around 1.0 between the estimates
computed independently from randomly split halves of trials.
Because the identical split-half data were used for all methods,
any differences in reliability could only be attributed to the
methods themselves. Finally, because the TradCV(σ) method
can only estimate σ in the restricted-sampling procedure, we
only report the reliabilities from this design.

In the ME task, the Spearman–Brown-corrected split-half
reliability of the PsiMLE(β,σ) method for estimating σ was
high (r = .93) and was equivalent to the reliability of the
TradCV(σ) method (r = .94); the reliability of the PsiMLE(β,
σ) method for estimating β was also high (r = .95) and was
higher than the reliability of the TradLog(β) method (r = .89).

In the MP task, the Spearman–Brown-corrected split-half
reliability of the PsiMLE(β,σ) method for estimating σ was
moderately high (r = .83) and was higher than the reliability of
the TradCV(σ) method (r = .68); the reliability of the
PsiMLE(β,σ) method for estimating β was also moderately
high (r = .83) and was identical to the reliability of the
TradLog(β) method (r = .82). Together, these results demon-
strate that the PsiMLE(β,σ) method is reliable.

PsiMLE(β,σ) requires fewer trials to converge (simulated
data)

Because PsiMLE(β,σ) uses every trial to estimate global β and
σ values, one benefit is its increased efficiency: PsiMLE(β,σ)
should require fewer trials to make better estimates. To empir-
ically test this, we computed the errors across the various
numbers of trials in our simulated data. Rapid improvement
in estimation accuracy should be seen as a decrease in estima-
tion error with increasing numbers of trials. We compared
these rates of improvement across PsiMLE(β,σ), TradCV(σ),
and TradLog(β).

The decrease in error with an increasing number of trials
was captured best by a power function, with a more negative
exponent corresponding to fewer trials being required for
PsiMLE(β,σ) than for TradCV(σ) and TradLog(β) (see
Fig. 4). In the restricted-sampling design simulations, the

PsiMLE(β,σ) method showed more rapid decreases in estima-
tion error for both β [PsiMLE(β,σ), –0.51; TradCV(σ), –0.48]
and σ [PsiMLE(β,σ), –0.52; TradLog(β), –0.35]. These results
were replicated in the unrestricted-sampling design for both β
[PsiMLE(β,σ), –0.52; TradLog(β), –0.16] and σ [PsiMLE(β,
σ), –0.52; binned TradCV(σ), –0.49]. Put in terms of the num-
ber of trials required to reach a particular level of error, the
traditional methods required more than twice as many trials as
PsiMLE(β,σ) to attain a similar level of performance. For
example, to achieve a percent error of 5 % of true σ, the
TradCV(σ) method required around 400 trials, whereas
PsiMLE(β,σ) required only 150 trials; similarly, to achieve
an absolute error of 0.02, the TradLog(β) method required
542 trials, whereas PsiMLE(β,σ) required 214 trials. The sim-
ulations therefore demonstrate that the PsiMLE(β,σ) method
is more efficient than the traditional methods.

PsiMLE(β,σ) can detect violations of the standard
psychophysical model (simulated data)

As we reviewed in BExtending PsiMLE(β,σ) to test model
violations^ section, researchers are often interested in deter-
mining whether a pattern of responses is consistent with the
standard psychophysical model or whether this model was
violated. Two especially pertinent violations are counting
(which results in binomial, rather than scalar, variability) and
nonconstant scalar variability (i.e., a different σ in low or high
intensities). Counting is most likely to happen with number
and time estimation tasks. In BExtending PsiMLE(β,σ) to test
model violations^ section, we described how PsiMLE(β,σ)
can be used to detect these violations. In this section, we
empirically demonstrate its ability and sensitivity to catch vi-
olations of the standard model, namely by identifying simu-
lated observers who Bcounted.^

The traditional method of catching counters relies on the
fact that—given the binomial variability of counting—CVs
tend to decrease with target values on a log–log plot [i.e., since
counting variability increases as a square root of the target
number, the slope of log(CV) over log(number) should be –
0.5]. Thus, a counter is classified as such if the slope of the
log–log plot of CVs over target numbers is significantly dif-
ferent from 0 (in practice, however, most researchers simply
check whether the slopes are negative; e.g., Cordes et al.,
2001; Crollen et al., 2011). But—as we demonstrate be-
low—this method is not as accurate as the maximum-
likelihood alternative, cannot be applied to unrestricted-
sampling designs, and requires many more trials to achieve
equivalent power.

The PsiMLE(β,σ) method, instead, compares the likeli-
hood of the standard model (i.e., scalar variability) to the like-
lihood of the counting model (i.e., binomial variability) via
their AICs; if the AIC value of the counting model is lower
by at least 3.0 than that of the standard model, we have
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evidence that the observer likely counted. As we demonstrate
below, this method holds numerous advantages over the tra-
ditional one—it is more accurate than the traditional method,
can be applied to any design, and is more efficient.

To test the sensitivity of the PsiMLE(β,σ) method for catch-
ing counters, we implemented simulated observers in a
restricted-sampling design who imperfectly Bcounted^ over
200 trials and made both double-counting errors (i.e., counted
one item as two) and skipping errors (i.e., did not count an
item). The target values were 20, 30, 40, and 50.We varied the
probabilities of these two errors from 5 %/item to 20 %/item.
These simulated observers showed the mathematical charac-
teristics of counting: Their errors were binomially distributed,
and—consistent with variability increasing with the square
root of numerosity—had an average slope of –0.49 on a
log–log plot (e.g., see Fig. 2C). To directly compare
PsiMLE(β,σ) against the traditional method, we randomly
generated 8,000 observers that either counted (i.e., had bino-
mial variability) or did not count (i.e., had scalar variability
with σ between 0.05 and 0.20). We then used the traditional
and PsiMLE(β,σ) methods to decide, for every simulated

observer, whether they were likely to have counted or not
counted.

The traditional method correctly classified simulated
observers as counters or noncounters in 84.3 % of cases
(SE = 0.59), whereas the PsiMLE(β,σ) method correctly
classified in 96.1 % of cases (SE = 0.39), showing
superior performance. Both methods performed better
when simulated observers had higher percentages of
counting errors. The traditional method also showed a
significantly lower hit rate [TradCV(σ), 71.2 %,
PsiMLE(β,σ), 93.4 %] and a significantly higher false-
alarm rate [TradCV(σ), 2.7 %; PsiMLE(β,σ), 1.2 %],
resulting in a poorer d' value for the traditional method
than for PsiMLE(β,σ) [TradCV(σ) d', 2.48; PsiMLE(β,σ)
d', 3.73].

Next, we redid the simulations in an unrestricted-sampling
design (i.e., target values randomly varied between 20 and 50)
with 200 trials and counting error rates between 5% and 20%.
As before, we could not get reliable estimates of CV from the
TradCV(σ) method and, hence, could not apply the traditional
method of catching counters. On the other hand, the

Fig. 4 Estimation errors as the
number of trials increases in both
restricted-sampling (top) and
unrestricted-sampling (bottom)
designs. PsiMLE(β,σ) is more
efficient than the traditional
methods (i.e., requires fewer trials
for lower errors) in all four plots
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PsiMLE(β,σ) method performed well in the unrestricted-
sampling design and correctly classified simulated observers
as counters or noncounters in 91.23 % of cases (SE = 0.45).

Finally, we tested the efficiencies of the two methods at
catching counters. We simulated both counters and
noncounters in an unrestricted-sampling design with 40,
100, 200, and 400 trials, and with the error rate at a constant
15 %. Unsurprisingly, the number of trials had an effect on
both methods; however, the PsiMLE(β,σ) showedmuch better
performance across the different numbers of trials (M40 =
77.5 %,M100 = 90.53 %,M200 = 97.0 %,M400 = 99.5 %) than
did the traditional method (M40 = 59.6 %, M100 = 72.21 %,
M200 = 84.96 %, M400 = 94.82 %). This advantage was pri-
marily due to the traditional method requiring many more
trials for the negative slope to be statistically significant (re-
moving this criterion produced an extremely high number of
false alarms, however); the PsiMLE(β,σ) approach, on the
other hand, requires substantially fewer trials by using the
AIC method.

Overall, the results of the counting simulation suggest that
the PsiMLE(β,σ) method can catch counters more accurately,
more flexibly, and more efficiently than the traditional
method.

General discussion

Over a century of work in psychophysics has shown a surpris-
ing degree of commonality in how our cognitive system rep-
resents quantity—the vast majority of psychological dimen-
sions, across every modality, are best described by a simple
model of Gaussian tuning curves (whose variability is cap-
tured by σ) along an ordered ratio scale (whose expansion/
compression is captured by β). This model can capture most
known behavioral signatures, including scalar variability, S. S.
Stevens’s power law, and Weber’s law, and as a result, has
unified findings across psychophysics, cognition, develop-
ment, neuroscience, comparative psychology, and computa-
tional modeling.

But, although this model is defined by two inherently re-
lated variables, existing methods have focused on measuring
them in isolation. Additionally, the existing methods have
numerous shortcomings, including lower reliability, a lack of
design flexibility (i.e., requiring restricted sampling), and re-
duced efficiency.

Here, we proposed a novel, maximum-likelihood-based
method—PsiMLE(β,σ)—that follows directly from the stan-
dard psychophysical model. This new method retains the un-
derlying continuous representations, allows for great flexibil-
ity in research designs (including designs that randomly sam-
ple the continuous distributions), and as a result of using each
trial to estimate the global parameters, is more reliable and
efficient than the traditional methods. Furthermore, we have

demonstrated how this model can be used to test possible
nonstandard models, including those in which observers
may have counted or in which σ may change in the high or
low stimulus ranges. The method can also be easily extended
to a Bayesian approach to data analysis (see the Appendix).

The PsiMLE(β,σ) method, in virtue of following
maximum-likelihood principles, can easily be extended and
refined to further cases. For example, should psychophysics
discover the presence of a third parameter, or that the expan-
sion or compression of target values is not governed by power
laws, the PsiMLE(β,σ) equations can easily be adapted.
Additionally, this method allows for excellent comparisons
across a variety of different nonstandard models, allowing
researchers to continue discovering where the standard model
may hold and where it may break.

We hope that this new method and the freely available R-
PsiMLE software will be adopted by other researchers and
used to infer the structure of the underlying representations
of quantity across dimensions, individuals, and response
strategies.

Appendix: A Bayesian extension to PsiMLE(β,σ)

In this appendix, we demonstrate how PsiMLE(β,σ) can be
extended into a Bayesian framework and provide code that
can be implemented in JAGS. Our R-PsiMLE GUI interface
also has (a simplified) method of running this code through R;
further information on R-PsiMLE is available online. For a
general introduction to Bayesian data analysis, see Kruschke
(2010).

The Bayesian approach to parameter estimation in-
herits all of the advantages of PsiMLE(β,σ), but it also
has further advantages in virtue of Bayesian parameter
estimation. A full overview of the Bayesian approach is
outside the scope of this article, and here we assume
some familiarity with Bayesian parameter estimation and
with JAGS.

A Bayesian version of PsiMLE(β,σ) requires two things: a
regression model that specifies linearly increasing scalar var-
iability, and a set of priors over α, β, and σ (see below). To
help us specify the priors, we examined a wealth of research
on psychophysical scaling, all reviewed in the introduction.
Our best guess for priors over α and β was that they are
normally distributed, with the mean and standard deviation
depending on both the dimension in question and whether
the task is based on a form of estimation or production (values
for most dimensions can be found in standard textbooks on
psychophysics, including Gescheider, 1997). Similarly, the
empirically measured prior distribution for σ is either a normal
or log-normal distribution, with specific values depending on
the dimension in hand (e.g., specific values for number can be
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found at Halberda et al., 2012). Of course, the exact nature of
the priors remains an empirical question, and readers are wel-
come to alter these as they see fit.

Here we provide the JAGS model for standard power-
distributed regression with scalar variability modeled as a
log-normal distribution, given target values x, participant re-
sponses y, and number of trials n (the priors here are purpose-
fully weak):

#psimle_jagspower model
model{
#priors
alpha ~ dnorm(1,0.001)
beta ~ dnorm(1,0.001)
sigma ~ dlnorm(1,0.001)
for(i in 1:n){
mu[i] <- alpha*pow(x[i],beta)
prec[i] <- 1/pow(mu[i]*sigma,2)
y[i] ~ dnorm(mu[i],prec[i])
}
}
The R code implementing this model through rjags, given

some participant data, is
library('rjags')
#INITIALIZE DATA
inits <- list('alpha'=1,'beta'=1,

'sigma'=0.5)
#SET UP MODEL
parameters = c('alpha','beta','sigma')
n.adapt = 100
n.burn = 1000
n.chains = 4
n.saved = 4000
n.thin = 1
n.iter = ceiling((n.saved * n.thin) /

n.chains)
jags.power <- jags.model('psimle_

jagspower.bug',
data = list('x' = target_values,
'y' = responses,
'n' = length(responses)),
inits = inits,
n.chains = n.chains,
n.adapt = n.adapt)
#BURN IN
update(jags.power, n.burn)
#GET VALUES AND CREDIBILITY INTERVALS
codaSamples <- coda.samples(jags.power,
parameters,
n.iter = n.iter,
thin = n.thin)
summary(codaSamples)
#PLOT
plot(codaSamples)

In our simulations, we found that three or four chains with
anywhere between 800 and 2,000 iterations per chain was
more than sufficient for reliable estimation.

Altering the JAGS code to accommodate other models
discussed above is straightforward. For example, for the
countingmodel: Alter precision so that σ is raised to the power
of the linearly distributed mean. In the case of counting, we
should also expect σ to be reliably normally distributed around
0.5, and thus the prior should also be adjusted (see, e.g.,
Cordes, Gelman, Gallistel, & Whalen, 2001):

#psimle_jagscounting model
model{
#priors
alpha ~ dnorm(1,0.001)
beta ~ dnorm(1,0.001)
sigma ~ dnorm(0.5,0.001)
for(i in 1:n){
mu[i] <- alpha+x[i]*beta
prec[i] <- 1/pow(mu[i]^sigma,2)
y[i] ~ dnorm(mu[i],prec[i])
}
}
Model comparison can then be done by means of either the

DIC or the Bayes factor. For example, the R function
dic.samples() can be used to provide DIC values. These can
then be compared against an alternative model. For a guide to
using the DIC, see Berg, Meyer, and Yu (2004).
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