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We address the challenges of how to model human perceptual grouping in random dot arrays and how
perceptual grouping affects human number estimation in these arrays. We introduce a modeling
approach relying on a modified k-means clustering algorithm to formally describe human observers’
grouping behavior. We found that a default grouping window size of approximately 4° of visual angle
describes human grouping judgments across a range of random dot arrays (i.e., items within 4° are
grouped together). This window size was highly consistent across observers and images, and was also
stable across stimulus durations, suggesting that the k-means model captured a robust signature of per-
ceptual grouping. Further, the k-means model outperformed other models (e.g., CODE) at describing
human grouping behavior. Next, we found that the more the dots in a display are clustered together,
the more human observers tend to underestimate the numerosity of the dots. We demonstrate that this
effect is independent of density, and the modified k-means model can predict human observers’
numerosity judgments and underestimation. Finally, we explored the robustness of the relationship
between clustering and dot number underestimation and found that the effects of clustering remain,
but are greatly reduced, when participants receive feedback on every trial. Together, this work suggests
some promising avenues for formal models of human grouping behavior, and it highlights the importance
of a 4° window of perceptual grouping. Lastly, it reveals a robust, somewhat plastic, relationship between
perceptual grouping and number estimation.
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1. Introduction perceived numerosity has often been explored by presenting

human observers with simplified images of multiple items that

We possess the remarkable ability to nonverbally extract the
numerosity of collections of multiple items through a near-
instantaneous impression of approximate number. This ability
can be useful in real world contexts, which often contain structures
formed by groups of similar objects clustered together (e.g., trees
in a forest or buildings and cars on the street, etc.). In such cases,
it is often impractical to directly count items one-by-one: the num-
ber of items may be too large, separating already-counted items
from not-yet-counted ones may be very difficult, the viewing time
may be limited, and so on.

The situations in which we most naturally extract the approxi-
mate number of visual elements are also situations that naturally
invite perceptual grouping of items into clusters. In the lab,
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are distributed over space and asking observers to estimate or dis-
criminate numerosity (e.g., Gilmore et al., 2013; Halberda, Sires, &
Feigenson, 2006; Izard & Dehaene, 2008; Jevons, 1871; Smets,
Gebuis, Defever, & Reynvoet, 2014; Whalen, Gallistel, & Gelman,
1999). Previous findings consistently show that observers can
apprehend the approximate number of items from a very brief
exposure (e.g., 100 ms without a mask: Izard & Dehaene, 2008;
500 ms of presentation, followed by a mask: Halberda et al.,
2006; even from 66 ms of presentation, followed by a mask: Im
& Halberda, unpublished data). The rapidity of numerosity estima-
tion seems somewhat surprising given that counting takes about
300 ms per item (Simon & Vaishnavi, 1996). The mechanisms that
allow us to quickly and easily perceive the numerosity of up to 100
items within a 100 ms display remain a mystery (e.g., Izard &
Dehaene, 2008). The fact that counting requires 300 ms per item
also motivates the suggestion that perceived numerosity of a large
number of elements may be achieved relying on a distinct


http://crossmark.crossref.org/dialog/?doi=10.1016/j.visres.2015.08.013&domain=pdf
http://dx.doi.org/10.1016/j.visres.2015.08.013
mailto:him3@mgh.harvard.ediu
http://dx.doi.org/10.1016/j.visres.2015.08.013
http://www.sciencedirect.com/science/journal/00426989
http://www.elsevier.com/locate/visres

292 H.Y. Im et al./Vision Research 126 (2016) 291-307

mechanism from that operating for serial counting of individual
elements (for review, see Feigenson, Dehaene, & Spelke, 2004). Fur-
thermore, the ability to extract the approximate number of items
in visual collections is present from human infancy (Xu & Spelke,
2000), and is also shared by other animal species (Hauser, Carey,
& Hauser, 2000; Meck & Church, 1983). This further suggests that
there is a very basic visual mechanism for approximating the num-
ber of items in a visual display — a mechanism that does not require
schoolroom teaching.

There are several features of numerosity estimation that may
help to determine the underlying mechanism. Previous studies of
numerosity estimation consistently find that observers underesti-
mate the actual numerosity (e.g., Indow & Ida, 1977; Izard &
Dehaene, 2008; Krueger, 1982, 1984). While underestimation is
present from the very first trial (Krueger, 1982), Izard and
Dehaene (2008) have shown that observers’ numerosity estima-
tions can also be calibrated such that observers adjust their estima-
tion either to increase or decrease the amount of underestimation
when they are provided with explicit feedback. The source of this
underestimation remains to be described, and one possibility is
that this underestimation emerges from the heuristic, or algorithm,
for extracting approximate number from the visual display.

Human observers’ numerosity judgments also display an inher-
ent variability or noise that increases linearly with the signal - sca-
lar variability (discussed as the coefficient of variation, CV: Cordes,
Gelman, & Gallistel, 2001; Crollen, Castronovo, & Seron, 2011;
Frank, Everett, Fedorenko, & Gibson, 2008; Le Corre & Carey,
2007; or also as the Weber fraction, w: e.g., Dehaene, 2003;
Dehaene & Changeux, 1993; Meck & Church, 1983; Stoianov &
Zorzi, 2012). CV reflects the normalized standard deviation of
assumed Gaussian distributions for internal representations, which
is inversely related to the precision of the internal representation.
Therefore, the precision of numerosity estimation can be quanti-
fied by CV, with lower CV indicating more precise number
estimation.

Another feature of numerosity estimation that may inform pro-
posed mechanisms is the lack of a demonstrated upper bound for
number estimation. Unlike serial counting of individual objects
for small, precise number (e.g., subitizing; Trick & Pylyshyn,
1993, 1994), extracting approximate number is not constrained
by the limited capacity of object-based attention. For example,
observer’s error rate and response time do not increase with the
absolute numerosity, suggesting that extracting approximate num-
ber does not rely on the serial, limited process of object-based
attention (Barth, Kanwisher, & Spelke, 2003). For these reasons,
several researchers have suggested that a global process might
support the estimation of approximate number, and there are
many such global processes that could be relevant. For example,
it has been suggested that textural information about the whole
scene such as the density of elements within a given area can sup-
port the rapid extraction of large, approximate numerosity of ele-
ments in a visual array (Dakin, Tibber, Greenwood, Kingdom, &
Morgan, 2011; Tibber, Greenwood, & Dakin, 2012). Such models
are consistent with suggestions that numerosity is not perceived
directly, that is, as an independent visual property, but rather is
calculated indirectly via texture density (Durgin, 2008). Indeed,
one would expect that density and numerosity would be highly
inter-related in the environment (e.g., more items goes with more
density).

Relatedly, it has been found that how dots are spatially orga-
nized can modulate perceived numerosity - e.g., a uniform layout
of items throughout the display area results in a scene that appears
more numerous than the same number of items clustered into
multiple sub-groups (Frith & Frith, 1972); and dots occupying a
more extended region of the display area results in a scene that
appears to be more numerous than the same number of items

clustered into a smaller display region (Bevan, Maier, & Helson,
1963; Binet, 1890; Ponzo, 1928). From results such as these, it
seems likely that the mechanisms that support the extraction of
approximate number will involve early, rapid, global processing -
perhaps with some additional later algorithms that may be
attention-dependent.

The models on visual density and texture perception (e.g., Dakin
etal.,2011; Tibber et al., 2012) have been popular not only because
they are computationally simple and biologically plausible but also
because they can very precisely predict human observer’s response
bias in numerosity estimation. However, the conclusions from
these models may mislead one to overlook the fact that human
observers are also able to perceive the visual dots in different levels
of hierarchy, from individual objects (e.g., how many dots) to con-
figuration of higher-level groups (e.g., how many clusters). Other
work suggests that number judgments rely on interactions across
multiple levels (e.g., groups and items).

A fourth feature of number estimation is the effect of visual
grouping on number judgments. Approximate number estimation
is modulated by how elements are grouped and bound together
into higher-order objects. The same number of items will look
more numerous when regularly arranged than when randomly dis-
tributed (Ginsburg, 1976; Taves, 1941), and random patterns look
more numerous than clustered patterns (Ginsburg & Goldstein,
1987). The grouping of elements in a display also affects number
estimation latencies such that several groups of dots spread out
in the periphery of the display are enumerated faster than the
same number of dots clustered into one group in the center of
the display (van Oeffelen & Vos, 1982), suggesting that parsing of
elements into subgroups may occur before enumeration of the ele-
ments. Extending these grouping effects into more advanced visual
processing, it has also been shown that when higher-order objects
are presented (e.g., 3D-like objects consisting of two squares and a
connecting line between the squares; Franconeri, Bemis, & Alvarez,
2009; He, Zhang, Zhou, & Chen, 2009), observers tend to more dras-
tically underestimate the number of squares than when the same
number of squares are presented as disconnected “lollipops”. Note
that in such cases the number of elements (e.g., squares and con-
necting lines), the size of elements, lower-level visual texture cues,
and the overall display area, were held constant - suggesting that
it is the higher-order grouping cues that drive the effect. These
findings together provide evidence that visual grouping cues affect
estimation of approximate number, but they do not provide a com-
putational account for grouping and its effects on approximate
number.

These features of approximate number estimation can help
inform proposals for mechanisms that support the extraction of
approximate number. Proposed mechanisms might provide a prin-
cipled explanation for the underestimation bias, they could expli-
cate proposals that rely on rapid and global processes, and they
might include a role for visual grouping effects in numerosity per-
ception. Because perceptual grouping organizes the visual scene
into units, and because it can operate rapidly across the entire
image, we focus here on the possibility that perceptual groups
may be crucial higher-units for the rapid extraction of approximate
number in random dot arrays.

Before our empirical investigation, we first consider the litera-
ture on perceptual grouping in greater detail. Even when there is
no explicit grouping cue such as connecting lines (e.g., Franconeri
et al., 2009), the visual system can organize the visual scene easily
and flexibly. When similar items are randomly distributed over
space, observers can readily and near-instantaneously organize
the global structure from the scene by grouping items together
based on proximity (Pomerantz, 1981). Visual grouping has been
a significant focus of perception research since it was first empha-
sized by Gestalt psychologists (Wertheimer, 1924). The law of
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grouping by proximity states that “when the field contains a
number of equal parts, those among them which are greater in
proximity will be organized into a higher unit”, (Koffka, 1935, pp.
164-165). The mental computations for proximal grouping have
been suggested to operate in a purely bottom-up fashion
(Pomerantz, 1983) and grouping is achieved at a pre-attentive
stage of visual-processing (Neisser, 1967).

Although existing reports demonstrate observers’ perceptual
grouping behavior when presented with different images, formal
descriptions of the underlying mechanisms have been somewhat
lacking. Very reasonably, much of the evidence presented in sup-
port of perceptual grouping has focused on phenomenological
demonstrations. Only a few attempts have been made to propose
and evaluate formal models of perceptual grouping by proximity
(e.g., the CODE algorithm proposed by van Oeffelen and Vos
(1982) and evaluated by Compton and Logan (1993, 1999). Existing
computational models of perceptual grouping by proximity might
be improved and refined such that the models would be capable of
explaining human grouping behavior more efficiently, with sim-
pler estimation procedures (e.g., with fewer free parameters). Here,
we propose and test one such approach. Our new approach to
modeling human grouping behavior relies on a modified version
of the k-means clustering algorithm from computer vision. Similar
to the standard k-means algorithm, our window-based clustering
algorithm finds a solution that partitions the dots in a random
dot array into k clusters. Each dot is assigned either to a multi-
dot cluster, or becomes a cluster unto itself. The critical modifica-
tion for our window-based clustering algorithm is that it returns
the number of clusters, k, as a result of varying the size of the
grouping window throughout a range, whereas the k-means algo-
rithm is given a k value as an input for a goal state. We will show
that our window-based clustering approach provides a robust,
quantitative measure of human observers’ grouping assignments,
determined by the grouping window size (the only free parameter
for the model). In Experiment 1, we focus on describing and testing
this algorithm with respect to human judgments for the number of
visual groups present in random dot arrays. In Experiment 2, we
extend this approach to test the effects of perceptual groups on
human number judgments for the total number of elements in ran-
dom dot arrays. Given the pre-attentive, global nature for percep-
tual grouping, we reason that perceptual groups as “higher-units”
are achieved before numerical estimation and may support the
rapid read-out of a visual array containing multiple items to be
enumerated. The relevance of the perceptual grouping problem
for the study of number estimation is highlighted by the previous
work, in that the stimuli used for numerosity estimation usually
contain similar items that are randomly located over space (e.g.,
Choo & Franconeri, 2014; Franconeri et al., 2009; Halberda et al.,
2006; lzard & Dehaene, 2008; Miller & Baker, 1968; Whalen
et al., 1999).

Previous research, reviewed above, suggests that visual numer-
ical approximation is likely to involve multiple levels of processing
- beyond just early visual density — and suggests that perceptual
grouping may affect numerical judgments. But, previous research
has not provided a quantitative analysis of the relationship
between grouping and number estimation. Given the constructive
nature of the visual system, we reason that perceptual grouping
based on proximity is likely to occur prior to enumeration, and that
it may provide some of the inputs for the rapid extraction of
approximate number. To test these ideas, we explored human
observers’ grouping behavior and how their grouping judgments
might systematically affect their numerosity judgments.

To summarize our investigations, we first show that our new
clustering approach provides an accurate fit to human observers’
judgments of the number of clusters within random dot arrays
(Experiment 1). We next investigate the relationship between

grouping and number by varying the clustering index of stimulus
images (as measured by our clustering algorithm) and measuring
observers’ numerical estimation biases and precision (Experiment
2). We then investigate the robust nature of grouping effects on
numerical cognition by providing explicit feedback for numerical
judgments and looking for the effects (and non-effects) of learning
on numerical judgments (Experiment 3). We also compare our
numerical estimation algorithm to existing models for both per-
ceptual grouping by proximity (e.g., CODE, van Oeffelen & Vos,
1982) and perceived numerosity (e.g., the Occupancy Model, Allik
& Tuulmets, 1991) and demonstrate that the current modeling
approach is accurate and generalizable in explaining how human
observers group multiple items and how they enumerate. Based
on our results, we propose that rapid extraction of approximate
number can be achieved relying on a fast, global mechanism that
is affected by a clustering pattern for perceptual groups.

2. Experiment 1

In Experiment 1 we measured observers’ estimates of percep-
tual groups in arrays of randomly positioned dots and modeled
these responses.

2.1. Method

2.1.1. Subjects

10 naive undergraduate students from Johns Hopkins Univer-
sity participated in the experiment for course credit. All of the sub-
jects had normal or corrected-to-normal vision. Informed consent
was obtained for experiment from the participants in accordance
with the Declaration of Helsinki. The experimental protocol was
approved by the Institutional Review Board of Johns Hopkins
University.

2.1.2. Apparatus and stimuli

The stimuli were generated using MATLAB software, together
with the Psychophysics Toolbox extensions (Brainard, 1997; Pelli,
1997), and were displayed on a 17-in. LCD monitor driven by a
Macintosh iMac computer. The subjects were seated approximately
50 cm from the screen and viewed the display binocularly. At this
viewing distance, each pixel was approximately 0.0213° of visual
angle. The stimuli were presented on a gray background and con-
sisted of multiple blue dots (5-35 dots) each of which subtended
0.96° of visual angle. Locations of the dots were randomly chosen
for each of the 180 visual images, displayed within the virtual gray
area, subtending 16° x 20° of visual angle. The overall range of dot
density in the stimulus images was 0.02-0.11 dots/deg?, which falls
within the range in which the mechanisms for numerosity (not
density) governs the numerosity judgments and Weber’s law holds
for numerosity discrimination (Anobile, Cicchini, & Burr, 2014). The
recent study from Anobile et al., 2014 has suggested that there
exists two separate mechanisms (i.e., one for numerosity and one
for density) for processing random dot arrays, and that which is
more dominant will vary according to the density of display.
Anobile et al. (2014) showed that the dominant mechanism
switches from numerosity to density at the key density of
0.2-0.3 dots/deg?. That is, when a stimulus contains more than
0.3 dots/deg?, visual processing of the stimulus relies more on the
mechanism for density, whereas when the dots are more sparsely
distributed than this, visual processing of the stimulus relies more
on the mechanism for numerosity. Based on this previous finding,
the dots in our visual displays seem to be very sparsely distributed,
which is suitable for numerosity task.

The mask images were created to be effective by ensuring that
the mask stimuli contained the same color feature as the stimulus
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images (e.g., blue outlined circles: Fig. 1): this has been suggested
to increase the chance to interfere with or prevent processing of a
stimulus image (Haber, 1970). In order to avoid any confusion
caused by adjacency in its perceived appearance (Haber, 1970),
we also ensured that the mask images had up to 120 outlined
circles that were randomly located and overlapping. This approach,
of appropriately choosing a visual mask image, can help us inter-
pret the data from the varying viewing times used in Experiment
1 - i.e., controlled by the onset of a visual mask image, the avail-
ability of stimulus information will “stop” at the point of the mask
(e.g., from 50 to 320 ms post stimulus onset), and processing of the
perceptual groups will be based solely on the information available
up to that point (Schultz & Eriksen, 1977; Sperling, 1963).

2.1.3. Procedure

Fig. 1 illustrates a sample trial of the experiment. All 10 partic-
ipants were presented with the same 180 stimulus images contain-
ing dots randomly located. The images were generated in advance
and presented to each participant in a different sequence. After a
ready signal, the stimulus array containing multiple dots was pre-
sented for varying durations (from 50 ms to 320 ms), followed by a
mask array (Fig. 1). Although all the participants were shown the
same 180 stimulus images, the display duration of stimulus images
was randomly varied between 50 ms and 320 ms across the partic-
ipants. After the mask array, a response screen was presented until
a participant made a response. The response screen contained a
continuous, linear scale with tick marks at every discrete value
between 1 and 40 (Fig. 1). Participants were instructed to click any-
where on this response scale to make a response, using a mouse
cursor. That is, participants were free to click any fractional value
between 1 and 40 on the continuous response scale.

The task instructions given to the participants for Experiment 1
were minimal. Written instructions were read out loud to each
participant as follows:

“On each trial, you will see many dots on the screen. After the
stimulus display disappears, your task is to guess how many groups
of dots were presented in the display. Please make sure that you
don’t count any dots serially. Instead, please try to see the whole
image and try to make a reasonable guess of how many groups
of dots were presented. Click on the linear scale on the bottom of
the screen in order to indicate how many groups of dots were
presented. If you are not sure, please make guess. There is no

Stimulus
50-320 ms

correct answer for this task, so you can count the groups in what-
ever way you feel the most comfortable and natural. If you feel like
none of the dots belongs in a group, each dot can be counted as an
independent group.”

The participants received 10 trials for practice and 180 trials for
test. Since there was no right or wrong answer, no feedback was
provided.

2.2. Modeling

In order to formally assess the perceptual groups in visual
images, we used a modified version of the k-means clustering algo-
rithm, which is one of the popular techniques for cluster analysis in
computer vision. The k-means clustering algorithm has been
applied to various domains such as computer vision (Ray & Turi,
1999), market segmentation (Chaturvedi, Carroll, Green, &
Rotondo, 1997), and geostatistics (Honarkhah & Caers, 2010). The
basic algorithm for k-means clustering is as follows (see also
Fig. 2a):

(1) k-Initial mean locations (i.e., centroids) are randomly gener-
ated by the algorithm (e.g., in Fig. 2a, three means are ran-
domly generated within the data domain).

(2) Each observation (e.g., each dot) is assigned to belong to one
of the centroids by determining which yields the nearest dis-
tance, creating k-clusters.

(3) The centroid location of each of the k-clusters is re-
calculated by the locations of its elements and replaced by
the new mean, aiming to partition the dots into k-clusters
to minimize the within-cluster sum of squares (WCSS).

(4) Steps (2) and (3) are iterated until convergence has been
reached such that the WCSS has been minimized.

Beginning from this basic algorithm of k-means clustering, we
made an important modification for a window-based clustering
algorithm (Fig. 2b). While the conventional k-means algorithm
engages the number of clusters k as a free parameter, our
window-based clustering algorithm returns k as a result of the
algorithm. Intuitively stated, this change allows us to ask of each
image “how many clusters are in this image, given a grouping win-
dow of size of T;.” In our window-based clustering algorithm, each
dot is initially in its own cluster (i.e., k = N) since the size of the

How many groups of dots?

Response

Fig. 1. Trial sequence and stimuli in Experiment 1. The stimulus containing multiple dots was presented for varying durations (50-320 ms) and followed by a mask stimulus
that lasted for 320 ms. Participants were asked to report how many groups of dots were presented in the stimulus array by choosing a value between 1 and 40 on the
continuous linear response scale, using a mouse cursor. The response array was presented until participants made a response.
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Fig. 2. Schematics of clustering algorithms. (a) The demonstration of the standard k-means algorithm. (b) The current algorithm of iterative clustering with a free parameter
for the window size T,. For each iteration, a modified k-means clustering algorithm was applied to predict the best estimates of the number of clusters given Ty. To fit each
human observer’s response, the model provides the best estimate among the T,'s from the N iterations of clustering.

clustering window is as small as the size of each dot. Next, the
algorithm increases the size of clustering window with each itera-
tion, and this will have the result that the number of clusters is
reduced (or remains the same) after each iteration. The window-
based clustering algorithm partitions the N dots into k-clusters
(k < N) by increasing the size of clustering window, until the corre-
sponding partition fulfills the constraint that all of the dots are
assigned to one of the clusters, as can be seen in Eq. (1):

IXp —mil| < Ta, VX, €85, 1)

Here, xp, is the location of each dot that belongs to a given cluster i;
m; is the mean location of the cluster i; T, is the clustering radius in
which all the dots closer to the centroid of a cluster than T, are
assigned to the cluster; and S; indicates each cluster with an index
of i. T4 is a constant, varying every iteration such that the size of
clustering windows remains the same across all the k clusters per
iteration. During this step, each dot can be assigned to one of the
clusters only when the distance between the center of the dot
and the centroid of the clustering window is smaller than T, and
the algorithm varies the number of clusters k until all the dots
in the visual array is assigned to one of the clusters while fulfilling
the window constraint.

Similar to the conventional k-means algorithm (e.g., Steinhaus,
1956), our window-based clustering algorithm proceeds by alter-
nating between assignment step and update step:

(1) Assignment step: Assign each dot to the cluster with the
closest mean,

0= {xp: Iy =il < oo -l Vi, 1<k} @)

(2) Update step: Calculate the new means to be the centroid of
the dots in the cluster,
me = Yy g
I5i" ] ges
where i and j indicate indices of clusters, and t indicates each iter-
ation step. The clustering threshold Ty is the clustering radius, and
the model determines the best estimate of the number of clusters
k at a given T, value. The clustering threshold can be directly trans-
formed to a clustering window diameter: Wy = 2 x T4. We find it
intuitive to discuss results in terms of the clustering window diam-
eter Wy, because W, can directly index grouping scale: if Wy is large,
more and more disparate items will be grouped together while if Wy
is small, fewer and fewer items will be grouped.

Although the assignment step and update step that we imple-
mented in our window-based clustering algorithm mostly resemble
those in the conventional k-means algorithm, our window-based
clustering algorithm has a crucial difference from the standard
k-means algorithm in that the fit we determine to the input data
does not depend on “random” choices each time the algorithm
returns a k value. The critical difference comes from the fact that
our window-based clustering algorithm does not fit the k value as



296 H.Y. Im et al./Vision Research 126 (2016) 291-307

a free parameter, but returns a k value as an objective result of the
varying Ty value. This allows us to determine a consistent and
robust model prediction for the number of clusters in each stimulus
image.

The steps above describe how our algorithm determines the dot
assignments and cluster centroids that result in the number of
clusters for any specified W,. One can carry out this type of process
for a wide range of values for Wy, or one can search for the W, that
provides a match to some goal state. Because our human data pro-
vides us with human ratings for the number of clusters that the
subjects subjectively experienced in each image, we sought to
obtain the value of W, that minimized error between human judg-
ments and model predictions - we will report results from fitting
this algorithm to individual trial data as well as to the entire set
of each participant’s judgments. For each stimulus image, we ran
our algorithm at varying Wy values in a wide range and obtained
the estimated number of clusters at a given Wy value. We then
compared the model estimation to the number of clusters that
the participants had estimated for the image by calculating the
model prediction error as an absolute difference between the
model prediction and human estimation. When a range of different
values of W, yielded the same prediction for the participant’s
response for a given image, the algorithm returned the mean value
from this range as its final estimate for W, for the image. The range
of the Wy values to be tested and the step size of the W, increment
within the range were determined by a random walk search proce-
dure to improve the efficiency.

Our modeling approach allows us to provide a fit to human
grouping behavior. For example, perceptual groups can be orga-
nized at different scales (e.g., lower levels of a hierarchy can
encode more specific details of an image while higher levels may
organize these details into more global structural units; Palmer,
1975). In Fig. 3, for example, an observer may report experiencing
only one cluster including all the dots in an array. But there are
other grouping possibilities: a different observer might experience
two perceptual groups - one group of 10 dots and another with 7.
Or another observer might report seven groups of 2 or 3 each,
when they “zoom-in” - that is, when they parse finer-grained
details as forming perceptual groups. Likewise, in computer mod-
eling, perceptual grouping by proximity can operate under a

How many groups?

2 groups 7 groups

Fig. 3. Schematic example of the hierarchical structure of perceptual groups. For
the same image (a), perceptual groups can be organized at different levels into
either two larger groups (b) or 7 smaller groups (c).

“tight” grouping criteria - with only the closest elements being
grouped - or under a “loose” grouping criteria — with elements
grouped over longer distances. The free parameter W, of our model
- which estimates grouping window size for each observer for each
image - provides an estimate that quantitatively describes human
observers’ grouping patterns (e.g., how tightly or loosely they
group items in a visual array).

2.3. Results

In Experiment 1, participants were instructed to group dots in
whatever way they felt the most natural, easy, and comfortable
for them. We first looked at consistency in the behavioral judg-
ments across observers. Since there was no correct answer for
the images, we compared responses from the 10 subjects who
were tested on the same 180 images and examined whether partic-
ipants’ responses agreed with one another. Fig. 4 demonstrates
example scatter plots comparing the first two and the last two
observers, and Table 1 reports the R? values for all pairwise corre-
lations between observers. The x- and y-axes in Fig. 4 indicate dif-
ferent participants’ estimations of the number of groups from the
same images. The diagonal line indicates where the two partici-
pants’ estimations are perfectly in agreement with each other. As
can be seen by the positive correlations in the scatter plots, the
pairs of individual participants highly agreed with each other in
their estimation of the number of groups in each image (Fig. 4).
Table 1 shows all of the pairwise comparisons across participants
(i.e., each subject compared to each). The R? values in Table 1 sug-
gest fairly uniform agreement in responses across subjects. Thus,
despite the open-ended nature of the task, and the fact that the
subjects could choose their own criterion for how to group items,
the grouping patterns were highly consistent across individuals.
This suggests that all observers found this to be a natural and intu-
itive task, and it also suggests that subjects may be using similar
grouping criteria.

The agreement across observers raises the possibility that there
is some common metric that observers are using to group items
into groups - perhaps describable as a default grouping window
size, W,. If participants rely on a consistent and shared grouping
window size (Wy) across trials, we may be able to identify this
agreement by fitting a grouping window to each judgment. We
fit our window-based k-means clustering model (with the single
free parameter for grouping window size, W) to the participants’
responses. For this first modeling effort, we allowed every human
response to be fit by its own W,. That is, the best-fit value of Wy,
which minimizes the deviance between model prediction and
human estimation of the number of groups on each stimulus
image, was determined for each image and for each individual sub-
ject. Fig. 5a displays a histogram of all the best-fit grouping win-
dow sizes from all the presented stimulus images and from all
the subjects (~1800 trials). There is a clear peak at approximately
4° of visual angle. This means that most human responses seemed
to emerge from a grouping window size of around Wy = 4°. Because
the stimulus arrays involved randomly positioned dots, it is not
obvious from the stimuli that this distribution would be normally
distributed around 4°. With this in mind, it is noteworthy that the
majority of the best-fit estimates of grouping window size fell
around 4° of visual angle (mean = 3.91, median = 3.93). This sug-
gests that there may be a psychological default grouping window
size that operates across our images of randomly positioned dots.

We next assessed the consistency of a default grouping window
size across observers. For each observer, we varied the value of Wy
for all images in the stimulus set and we calculated the unsigned
error between the predicted number of clusters and the observer’s
response for each image. This is equivalent to searching for the sin-
gle value of W, that provides the most accurate fit to the entire set
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Fig. 4. Scatter plots of responses from three representative participants. The estimation of the number of groups of dots was highly consistent across the individuals.

Table 1
R? values for all pairwise correlations between observers’ estimation of the number of groups in Experiment 1.
S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

S1 037 048" 0.18 045" 0.40 036 0.50 045" 022
S2 0.69 0.26° 053" 0.39° 037" 0.22° 0.42 0.33
S3 0.12 0.24 0.14 0.38 0.19 0.34 0.32
S4 043" 011 0.13 0.10 0.26 032
S5 038" 031 045 033" 036
S6 0.15 0.23 0.28 0.21
S7 0.32 0.34 0.20
S8 021 029
S9 0.42
S10

" Indicates p <.05.
™ Indicates p <.01.

of responses for a subject (i.e., one free parameter per subject). In
Fig. 5b, we display the average unsigned error for each subject
(with different colored lines) across the stimulus set for a range
of values of Wy As shown in Fig. 5b, the match between the
model-predicted number of clusters and the observer’s responses
showed a marked decrease in error at a grouping window size of
around 4° of visual angle for each observer. This means that all
10 observers appeared to have similar grouping window sizes as
their default setting. It is perhaps surprising that all 10 observers
showed similar grouping patterns given that they were not
provided with any specific instructions about how to group. It
may be that the grouping pattern that we quantify here as a default
grouping window size of roughly 4° of visual angle for each
observer reflects a universal feature of perceptual grouping. In
support of this conjecture, if we assume that every observer had
a grouping window size of 4° for every image we get a strong linear
relationship between the model-predicted number of clusters and
the human responses for number of clusters (Black dots in Fig. 5c).
The R? for the regression between the average of human responses
and model prediction was 0.99 (p<.01). In Fig. 5c, gray dots
indicate the mean values for human participants’ responses for
each of the 180 images - to illustrate the variance across images
that the model classified as having the same number of clusters.
We found that, while there was some variance among the human
judgments for different images, this variance was small relative
to the good fit between the model and the human judgments - e.g.,
low spread of the gray dots (i.e., 180 individual images) around
the regression line. This approach also allowed us to look at which
images returned human judgments with the greatest deviation
from the model-predicted number of clusters. In Fig. 5¢c, we present
two stimulus images that resulted in differing human judgments
(i.e., higher and lower than model prediction) while the model
predicted the same number of clusters for these images. Human

participants estimated 5.5 clusters for the image with a red outline
and 3.0 for the image with a blue outline, whereas the model pre-
dicted that both images have four clusters. It is clear simply from
first impressions that the clusters in these images differ - even
though our current k-means algorithm classified them similarly.
This suggests that there will still be interesting variance to capture
beyond our model fits.

The design of Experiment 1 also allowed us to ask whether
grouping criterion changes over time. We compared estimates of
grouping window size for each participant at each stimulus dura-
tion (from 50 ms to 320 ms). That is, the trials at each of 4 stimulus
durations were sorted and then each group of trials was fit with a
different value for Wy for each observer (i.e., 4 best-fit values of W,
per observer). Fig. 5d shows the time course of the best-fit esti-
mates of grouping window size, averaged across participants. The
estimates of grouping window size remained stable with duration
as brief as 50 ms with little change over time, suggesting that a
stable grouping was possible from the perceptual evidence con-
tained in within a 50 ms exposure. This also suggests that partici-
pants’ grouping criteria was not highly modulated by a feedback
loop between active perception and grouping, active attention or
response biases that might require perceptual evidence after
50 ms. This suggests that participants used a stable grouping strat-
egy from as little as 50 ms of evidence, and they did not change
their strategy with increased viewing times.

The above results suggest that our k-means clustering
algorithm provides an accurate and stable fit to human grouping
judgments. To test the robustness of our estimate, we next con-
trolled for two measures of visual density and display area in our
stimuli. These are important controls as there are already pub-
lished effects of density and display area on perceived numerosity
(e.g., Durgin, 1995; Tibber et al., 2012; Tokita & Ishiguchi, 2010). In
order to ensure that the current k-means clustering estimate does
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Fig. 5. Modeling results. (a) Histogram of the best-fit window size for all the images presented to all the participants, predicted by the algorithm to predict participants’
grouping pattern. The mean and the median of the best-fit grouping window size was 3.91 and 3.93, respectively. (b) The model prediction error as a function of the grouping
window size. Each curve represents model prediction error for each participant (color-coded by participant). For most participants, the least model prediction error was
yielded at the grouping window size of about 4° of visual angle. (c) The correlation between the average of human estimates for the number of clusters and the model
prediction. The black dots indicate the overall average of human responses as a function of the model-predicted number of clusters. The gray dots indicate mean responses of
human participants for each of the 180 images. Two example images show the displays which yielded the most over- and under-estimation from the model prediction. The
red outlined image shows a trial where humans judged the display to have more clusters than the model predicted, and the blue outlined image shows a trial where humans
judged the display to have fewer clusters than the model predicted. The green line indicates equality, y = x. (d) Best-fit grouping window size as a function of stimulus
duration (50-320 ms), provided by the current clustering algorithm to explain participants’ grouping patterns. The absence of change over time suggests that the best-fit
grouping window was stable, and that grouping pattern did not change over time. (For interpretation of the references to color in this figure legend, the reader is referred to

the web version of this article.)

not simply parasitize on existing effects of density or area we took
the statistical approach of controlling for density and display area
in an analysis of the correlation between model predictions (for the
number of clusters in each stimulus given a Wy of 4°) and human
responses for the number of clusters.

Since density can be quantified by dividing the number of items
by the display area (e.g., Durgin, 1995, 2008; Tibber et al., 2012),
we first computed the number of items per visual degree for each
image. These values entered into a linear regression with human
estimation of the number of clusters. We saved the residual values
from this regression, thereby creating a measure of human
responses that is controlled for density. We next entered the num-
ber of items per visual degree into a linear regression with the
model-predicted number of clusters; we saved the residuals from
this regression; thereby creating a measure of model-estimates
of number of clusters that is controlled for density. We were then
able to ask whether there remained any significant relationship
between the residuals for human responses (controlled for density)
and the residuals for model-estimates of number of clusters (con-
trolled for density). A linear regression on these residuals revealed
that there was still a significant relationship between human num-
ber estimates and model-estimated number of clusters, after con-
trolling for visual density (Fig. 6a).

Although the number of items per visual degree within the dis-
play area has been frequently used in the literature as a measure of
density, it may not be an ideal measure for visual number. Because
the experience of number can be affected by display area
(Hurewitz, Gelman, & Schnitzer, 2006; Vos, Van Oeffelen,
Tibosch, & Allik, 1988), it may be that a measure of density that
is responsive to the visual dispersion of items would be preferred.

Thus, using the minimal area encompassing the target items as the
area of the display may be a better approach than using the whole
display region as an estimate of area. One standard way of estimat-
ing the size of the minimal area encompassing the display items is
the alpha shape (Edelsbrunner, Kirkpatrick, & Seidel, 1983). An
alpha shape is a concrete geometric object that is uniquely defined
for a particular point set. Fig. 6b shows examples of the alpha
shapes defined for our stimulus images. For this second analysis,
we computed the area of the alpha shape for each stimulus image
and then calculated the density of items within this alpha shape by
dividing the number of items by the area of the alpha shape. We
then examined whether there still remained a significant relation-
ship between the residuals for human responses (controlled for
density within the alpha shape) and the residuals for model-
estimated number of clusters (controlled for density within the
alpha shape). A linear regression on these residuals revealed that
there was still a significant relationship (R? = .90, p <.01) between
human number estimates and model-estimated number of clus-
ters, after controlling for visual density within the alpha shape
(Fig. 6¢). Therefore, we conclude that the model-estimated number
of clusters from the k-means clustering algorithm is not wholly
dependent on the effects of visual density or display region. Next,
we turn to comparing the k-means clustering model to a known
model of grouping by proximity.

2.4. Comparison to a relevant model of perceptual grouping by
proximity: the CODE algorithm and its extensions

The goal of Experiment 1 was to test our modeling approach for
estimating the number and size of the perceptual groups human
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version of this article.)

observers report seeing in arrays of randomly scattered dots. The
results of Experiment 1 suggest that our modified k-means cluster-
ing algorithm provides an accurate estimate of the number of
groups reported by human observers, that this algorithm can
translate human responses into an estimate of the critical grouping
window size that underlies human observers’ extraction of percep-
tual groups from these images, and that these estimates are stable
from as early as 50 ms of display duration. We next compare our
k-means clustering algorithm to another formal model of percep-
tual grouping by proximity, CODE (van Oeffelen & Vos, 1982).
Our goal was to determine which of these formal approaches more
accurately reflects the judgments of human observers for the
number of perceptual groups in each image.

The CODE algorithm was proposed by van Oeffelen and Vos
(1982) and has been used by later investigators (e.g., Allik &
Tuulmets, 1991; Compton & Logan, 1999; Logan, 1996; Smits,
Vos, & Van Oeffelen, 1985; van Oeffelen & Vos, 1984; Vos &
Helsper, 1991; Vos et al., 1988). In the CODE algorithm, each dot
in the stimulus array exerts an influence on its neighboring region.
This influence of neighboring dots is stronger when they are close
to each other, and decreases as they are separated further (van
Oeffelen & Vos, 1982). To implement this effect, the CODE

algorithm uses a spread function in the shape of a normal distribu-
tion, centered on each element’s location in the visual array. The
dispersion is the standard deviation of each spread function, which
is defined as half of the distance between every element and its
specific nearest neighbor. Once the spread function is built, it is
rescaled so that the height of its peak equals fo. Then, the spread
functions of all dots in the stimulus image are summed, to create
a strength gradient for the stimulus image as a whole. In this
model, the clustering of elements causes the strength of grouping
for some regions of the stimulus array to surpass a threshold value
fo. When this occurs, the elements that are included within that
region are identified as belonging to a single group.

Compton and Logan (1993) assessed the CODE model and
claimed that the original CODE might overemphasize the extent
of interactivity among dots as they are being grouped. They made
several extensions of the CODE model (Compton & Logan, 1993).
The extension that is most comparable to our clustering algorithm
used a single variable threshold. As in one of our applications of our
clustering model, this CODE model determines the threshold
values separately for each stimulus image and calculates the model
prediction error by subtracting the actual human rating and the
model predicted estimation. Then this CODE model chooses the
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best single value for the threshold for each individual participant
as the one that matches the greatest number of the participant’s
judgments.

For the purpose of comparison to our clustering algorithm, we
exploited both the original single threshold version of CODE (with
the threshold set to 1, which is the maximum height of each spread
function; van Oeffelen & Vos, 1982) and an extension of the CODE
with the best threshold value that was determined from the partic-
ipants’ responses (Compton & Logan, 1993). To compare model
performance, we calculated the correlation coefficient and the pre-
diction error. The correlation coefficient was calculated based on
the human responses for the number of clusters and the model
prediction for the number of clusters in each image. The prediction
error was calculated as:

(Model prediction — Human response)
Human response

Prediction error (%) = 100 x
4)

In order to generate the model predictions, we used the fixed
threshold value of 1 for the original CODE. For the extension of
CODE, we first varied the threshold values for all the images and
searched for the best-fit parameter which provides the least pre-
diction error for each participant. For our clustering model, we
applied the clustering window size of 4°. Fig. 7a and b demonstrate
the correlation coefficients between human responses and model
prediction and the percentage of model prediction errors from
the three different models. Both the prediction error and correla-
tion coefficient reveal that our clustering model provides a more
accurate prediction of human observers’ clustering pattern than
the grouping algorithms based on CODE.

It is important to note that both the original CODE and the exten-
sion of the CODE algorithm with the best threshold behave reason-
ably well in most cases. As shown in Fig. 8a, both models based on
CODE behave similar to our clustering algorithm and provide a pre-
diction that resembles the human grouping response (although the
CODE with the best threshold made a larger prediction error by
parsing some clusters into smaller clusters for this image). How-
ever, the CODE algorithms seem to fail in other critical cases. For
example, when individual dots are loosely distributed in the visual
array as in Fig. 8b, the spread function of the original CODE algo-
rithm exerts its influence over a very large area of the stimulus field,
clustering all the members into large groups together. As a result,
the original CODE algorithm predicts two groups, while the actual
human response was 13.6 on average. And, on the other hand, when
the distance between nearest neighbors decreases and collapses to
approximately zero, which is the extreme case when two dots
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occupy the two closest positions in space (Fig. 8¢), the spread func-
tions of both the original CODE and the CODE with the best thresh-
old severely shrink. The resulting narrow spread functions cause
these models to consider most of the dots as separate groups, pro-
viding the prediction of 6 and 10 groups respectively (c.f., human
response was 2.02 on average). Contrary to the CODE algorithms,
our k-means model accurately predicts the human grouping pat-
terns for all three cases (Fig. 8a-c).

2.5. Discussion

Our modeling approach with one free parameter for the group-
ing window size provides a formal description of human observers’
grouping pattern, suggesting a viable algorithm for human percep-
tual grouping. The model estimates of participants’ grouping win-
dow sizes reveal that participants’ grouping pattern was highly
consistent across individuals. Our clustering model seeks to for-
mally describe human observers’ impression of perceptual groups
when they were free to group items in their own way, and it may,
in this sense, provide a quantitative measurement for “common
sense” in human observers’ impression of perceptual groups. The
agreement across observers suggests that participants tend to
exploit similar rules for determining whether items are grouped
together or not, despite a visual stimulus set that involved displays
that varied in number and where individual items were entirely
unconstrained in their position within the display window.

The estimates of participants’ grouping window sizes were con-
stant from as early as 50 ms, suggesting that such a grouping
scheme may be pre-attentive and non-iterative. This suggests that
the fast, obligatory processing of perceptual groups could support
the rapid read-out of approximate number from a visual array. It
may be that perceptual groups that are available in a pre-
attentive and robust manner from as little as 50 ms of perceptual
evidence can support or affect the rapid extraction of the approxi-
mate number of individual dots, and empower or perhaps bias
human observers’ estimation of approximate number. In Experi-
ment 2, we test these possibilities by investigating whether human
observers’ underestimation tendency in numerosity estimation can
be captured by our clustering model.

3. Experiment 2

A fundamental requirement of human and animal number esti-
mation is the ability to estimate the approximate number of ele-
ments in collections, irrespective of differences in sizes, shapes,
dispersion or organization in the scene (Dehaene & Changeux,

CODE
(Oeffelen & Vos, 1982)

Variation of CODE with
the best threshold
(Compton & Logan, 1993)

The current Model

Fig. 7. Model comparison. (a) Correlation coefficient between the participants’ responses and model prediction by the current algorithm, the original CODE algorithm and its
variation. (b) The percentage of model prediction error for each algorithm, defined by the average deviations between the participants’ responses and model prediction,

divided by the participants’ responses.
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Fig. 8. Comparing three different grouping algorithms: our clustering model, the original CODE, and the extension of the CODE with the best threshold value. In each image
group (a—c), the “Human cluster estimation” image shows the original display image and the average of the humans’ behavioral judgments for the number of clusters in that
image; the “current model” image shows the current k-means clustering algorithm’s response for the number of clusters in the image and those clusters are depicted with
dashed circles correctly sized to reflect the critical grouping window size of 4°; the “CODE” image shows the predicted groups from the CODE algorithm along with a heatmap
generated by CODE to reflect the influence of each element, groups are shown with blue dashed ellipses whose sizes are drawn only for illustration; the “CODE with the best
threshold” image show the predicted groups from this algorithm along with a heatmap generated by the algorithm that reflects the influence of each element, groups are
shown with blue dashed ellipses whose sizes are drawn only for illustration (a): one example in which the current model and CODE perform reasonably well in describing
human grouping patterns while CODE with the best threshold overestimates the number of clusters. (b) One extreme case in which the original CODE algorithm grouped all
but one of the dots into one single cluster. The participants’ estimation of the number of groups for this stimulus image was 13.6, on average. The current model and CODE
with the best threshold predicted fairly well. (c) Another extreme case where the current algorithm successfully predicted participants’ cluster estimation behavior while
CODE and the CODE with the best threshold algorithms both failed. Although participants’ cluster estimation was 2.02 on average, the original CODE algorithm and the
extension of CODE provided 6 and 10 groups respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this

article.)

1993). However, the mechanism supporting the extraction of
approximate number remains unclear. Overall density in a visual
image can affect numerical judgments (Dakin et al., 2011) as can
overall display size (Tokita & Ishiguchi, 2010). These perceptual
effects may suggest that numerical estimation does not involve
processing beyond early visual stages. However, other researchers
have found that object connectedness can also affect numerical
estimation (Franconeri et al., 2009; He et al., 2009), suggesting that
further processing may indeed be involved before number
extraction.

In Experiment 1, we acquired human ratings for the number of
groups experienced in randomly scattered dot arrays. Based on the
human responses, we also provided an algorithm for estimating
the perceptual groups present in these arrays. In Experiment 2,
we asked a new group of naive subjects to estimate the number
of individual dots in the same arrays. We measured human perfor-
mance at this dot estimation task, and we assessed observers’
tendencies to over or underestimate the number of elements in
these displays and observers’ precision of dot estimation judgment.
Using human judgments, along with our model-based estimates of

the number of perceptual groups in each display, we investigated
the extent to which early perceptual grouping may affect
both the bias and precision of number judgments. We hypothesize
that, if perceptual clusters in a stimulus affect the extraction of the
number of dots, then both human observers’ tendency to over- or
underestimate the numerosity and the precision of observers’
numerosity estimation will be well captured by their grouping
pattern for each stimulus image. Furthermore, if we can identify
the functional relationship between the number of clusters and
these estimates of the bias (e.g., over- or underestimation) and of
the precision, then we may be able to effectively predict human
observers’ dot estimation performance simply based on the
number of clusters, predicted by our clustering model.

3.1. Method

3.1.1. Subjects

In Experiment 2, a different group of 11 naive participants
participated for course credit. All of the subjects had normal or
corrected-to-normal vision.
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3.1.2. Apparatus and stimuli
All the aspects were identical to those in Experiment 1.

3.1.3. Procedure

Participants were presented with exactly the same 180 stimulus
images that were used in Experiment 1. The order of presentation
of each image was randomized for each individual subject. On each
trial, a stimulus array containing multiple dots was presented for
320 ms, followed by a mask array and response array. The mask
and response screens were identical to Experiment 1.

Participants were asked to estimate the total number of individ-
ual dots in the image. No feedback was given to the participants.

3.2. Results

In order to examine the relationship between the grouping pat-
terns and participants’ estimation of the approximate number of
dots, we first calculated a clustering index (CI) by dividing the
actual number of dots present in an image by the number of clus-
ters that our clustering algorithm predicted. The prediction of the
number of clusters by the model was made at a grouping window
size of 4° of visual angle, as we estimated this to be near optimal in
Experiment 1. The CI indicates how much the dot elements are
clustered together in the stimulus image. In other words, a large
value of CI means that the elements are more grouped together
(densely clustered) and a small value of CI means that the elements
are not tightly grouped together (i.e., at a CI =1, the number of
individual dots and the number of clusters are the same). We then
binned the stimulus set as a function of CI's by a sliding window
with a size of 1 and with an overlap of 0.2.

We first looked for a relationship between the level of CI and the
magnitude of underestimation. The magnitude of underestimation
was quantified as the slope () from the linear regression of the
actual numerosity and human estimation. Fig. 9a plots the slope
B as a function of CI. The negative correlation between g and CI
(R=-0.86) was significant (p <.01), suggesting that as more dots
are clustered together (e.g., higher CI), the numerosity of the dots
are more underestimated (e.g., lower p). Together, these results
suggest that when participants tend to group more items together,
they also tend to underestimate the number of elements more.

This result suggests a systematic relationship between the
magnitude of underestimation of numerosity (Experiment 2) and
the grouping patterns of human observers (Experiment 1). We
further explored this connection between the estimates from our
cluster model and human observers’ numerosity estimation by
determining how well the CI for each stimulus can be used to pre-
dict the mean and variability of human responses for the number
of elements.

As noted above, in considering the expected mean of responses,
we first investigated p for each level of CI. Here we found a strong
negative relationship between CI and g: as dots became more clus-
tered (resulting in a higher CI) 8 became smaller (meaning that
observers tended to underestimate the number of dots more)
(Fig. 9a). We next considered predicting the variability of human
responses. Recall that variability in human responses will be
reflected in the coefficient of variation, CV. This is the SD of
responses divided by the mean. Elsewhere we have shown how
to calculate this estimate across all stimulus values using
maximum-likelihood estimation (the PsiMLE method, Odic, Im,
Eisinger, Ly, & Halberda, in press). We used PsiMLE to compute a
CV for each level of CI. We found a strong positive relationship
between CI and CV - as dots became more clustered (resulting in
a higher CI) CV became larger (indicating higher variability in
human responses), R = 0.81, p <.01 (Fig. 9b). These results suggest
that both p and CV are systematically related to the grouping pat-
tern within the stimulus such that when participants tend to group

more items together they also tend to underestimate and generate
more variable estimations of the dot numerosity.

As a further test of the relationship between clustering and
number estimation, we attempted to use the k-means model to
predict human number responses for all 1980 trials in the data
set (i.e., 180 trials x 11 subjects). To predict human number
responses from the k-means cluster model we relied on a cluster-
ing window size (W;) of 4°, and we took account of the group-wide
relationships between clustering index (CI) and  and CV demon-
strated in Fig. 9a and b. For each of our 180 image, we identified
the number of clusters in the image by running the k-means model
at Wy = 4°. Dividing the actual number of dots in the image by the
number of clusters derived a clustering index (CI) for each image.
We then used each clustering index to determine a predicted CV
and B for each trial using the regression equations found in our
group-wide analyses (e.g., the appropriate CV and S can simply
be read off Fig. 9a and b once you have the CI for a particular
image). Finally, by combining these with the actual number of dots
on the trial, it becomes possible to specify a Gaussian distribution
that is a model-based prediction of the mean and spread of human
responses for each trial. To compare these model predictions to
actual human responses, we took a single estimate from the pre-
dicted Gaussian for each trial, for each subject (e.g., 8.3291). This
number could then be compared to the actual behavioral response
of the human subject on that trial - a click on a continuous number
line (e.g., 9.1742).

In Fig. 9c¢, each dot is one of the 1980 trials in our dataset. The
x-axis for each dot is the single number that was the cluster
model’s prediction for that trial (e.g., 8.3291) and the y-axis for
each dot is the single number that was clicked by the participant
on the number line (e.g., 9.1742). As can be seen in Fig. 9¢, our clus-
tering model accurately predicted human participants’ estimation
of dot numerosity (R=.75, p<.01). Next, we turn to comparing
our model predictions for human number estimation to a known
model of number estimation.

3.3. Comparison to a relevant model of perceived numerosity:
Occupancy model

The occupancy model, proposed by Allik and Tuulmets (1991),
was designed as a model of human number estimation in random
dot arrays. The model assumes that each dot occupies a circular
territory with a fixed subjective amount of area (an occupancy
index) of radius r centered at each dot. The model then outlines
each item with the circular territory and each dot is assumed to
have an impact upon its neighborhood in the radius r. The occu-
pancy model postulates that the total area in a visual array that
is occupied by the region of dots provides the basis for numerosity
estimation. Specifically, if two dots are apart less than distance r,
their territories overlap each other and the contribution of those
dots to numerosity estimation decreases. With only one parameter
(r), the Occupancy model can predict number perception illusions
where clustered displays tend to be perceived as containing fewer
objects (e.g., Ginsburg & Goldstein, 1987). This is because dots in
clustered displays will produce more overlaps. While being rela-
tively simple, this elegant model can also predict human observers’
number estimations accurately based on the ratio of the total area
occupied by the dots in a stimulus image, accounting for the over-
laps and the sum of the number of pixels of the dots. In order to
compute this total area, the visual system could distribute its
resources over a large area without the need to access any of the
dots beyond computing the filled area.

To test whether the occupancy model also generalizes to our
current dataset, and to test whether the occupancy radius r is a rel-
atively universal parameter across studies, we exploited the
occupancy model to find the best occupancy radius r for our data.
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Fig. 9. Model prediction for data from Experiment 2. (a) Model prediction for g which reflects the magnitude of underestimation of dot numerosity as a function of CI
(clustering index) a measure of how much dots are clustered together. (b) Model prediction for CV which inversely reflects the precision of numerosity estimation, as a
function of CI (clustering index). (c) Model predicted number of dots based on the CI, g and CV values (x-axis) and the actual human responses (y-axis) for the stimulus images

in Experiment 2. The gray line indicates equality, y = x.

We first generated predictions for the occupancy model by varying
the occupancy radius r (between 0.2° and 2° of visual angle) and
searched for the occupancy radius r that provided the minimum
prediction error for each participant of Experiment 2. We also
computed a group average r by fitting the entire dataset as a single
group. These agreed well, and the best-fit occupancy radius r for
our dataset was about 0.34° of visual angle, which is very close
to the occupancy radius r (18-22' arc corresponding to
0.30-0.37° of visual angle) that was found in the original paper
on the occupancy model by Allik and Tuulmets (1991), thereby
replicating their study. Although experimental settings and param-
eters were different between Experiment 2 and the methods of
Allik and Tuulmets (e.g., the size of the stimuli and the display
areas involved), the human responses during the dot enumeration
task in Experiment 2 can be explained by an occupancy radius r
quite similar to the original occupancy model.

The occupancy model was designed to generate predictions for
human number estimation. Using the best-fit value for the
occupancy radius r (0.34°) we next found that the occupancy
model predictions correlated with human number estimations
(R=.485, p <.01). This is somewhat less than the correlation noted
earlier for our cluster model predictions of human number
estimation (R =.75, p <.01). Next, we sought to compare the pre-
dictions of the occupancy and cluster models directly via a partial
correlation. This analysis allows us to determine how well the
occupancy model predictions correlate with human judgments
once the predictions of the cluster model are controlled for, and
how well the cluster model predictions correlate with human judg-
ments once the predictions of the occupancy model are controlled
for. In this partial correlation, the predictions of the cluster model
still correlated well with human judgments even after controlling
for the predictions of the occupancy model (R =.643, p <.01). The
predictions of the occupancy model, while significant, correlated

less well with human judgments after controlling for the predic-
tions of the cluster model (R=.15, p <.01).

Rather than claiming that the cluster model is superior to the
occupancy model as a model of number estimation behavior, we
would like to highlight the similarity in the approach of these
two models - both focus on the overlap and relationships across
elements within a display. We suggest that the results of
Experiment 3 might motivate a continued and deeper exploration
into the effects of underestimation and increased variability in
number judgment tasks as affected by grouping and overlap in
stimulus arrays.

3.4. Discussion

Although our k-means clustering model was aimed at
estimating the number and size of perceptual groups in random
dot arrays (Experiment 1), in an extension of the model we found
that its estimate of clustering index (CI) can be used to effectively
predict human estimations of the number of total dots within dot
arrays (Experiment 2). In Experiment 3 we explored whether
observers could learn to ignore this bias from perceptual grouping
or whether, even with feedback, the underestimation bias from
perceptual grouping would be observed in number estimation.

4. Experiment 3

Since perceptual groups can be achieved from a brief presenta-
tion (e.g., 50 ms) and pre-attentively, relying on perceptual groups
might provide rapid access to multiple dots for the extraction of
approximate number. And, if extraction of approximate number
is dependent on higher-order groupings of elements, then the
effects of clustering on human number estimates might persist
even in the face of clear and consistent feedback to counteract
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these effects. In Experiment 3, we investigated whether observers
can learn to calibrate their responses and adjust their reliance on
perceptual groups when estimating the approximate number of
dots. We provided explicit feedback on each trial for the correct
answer. If participants can calibrate their responses and reduce
the tendency to rely on perceptual groups in estimating dot
numerosity according to feedback (e.g., [zard & Dehaene, 2008),
their responses will be less-influenced by the clustering index of
the images. However, if reliance on perceptual groups in estimat-
ing the number of dots is automatic and resistant to change, then
participants’ underestimation bias for the more clustered images
would still be observed.

4.1. Method

4.1.1. Subjects

A different group of 19 naive undergraduate students from
Johns Hopkins University participated in the experiment in
exchange for course credit. All of the subjects had normal or
corrected-to-normal vision.

4.1.2. Apparatus and stimuli

All aspects of stimuli were the same as those of Experiments 1
and 2, except that a new set of 198 stimulus images containing
randomly positioned dots (5-35 dots) were generated for Experi-
ment 3.

4.1.3. Procedure

The procedure of Experiment 3 was the same as that of Exper-
iment 2, except that participants were given feedback on every
trial. After participants made their response by clicking on the
response scale, a small vertical bar appeared at the location of
the correct answer. Participants were made aware of this bar and
told that it showed the position of the correct answer.

4.2. Results

As in Experiment 2, we calculated the CI by dividing the actual
number of dots by the model-predicted number of clusters and
used a sliding window of size 1 for binning. We then calculated
the B, which is a slope of participants’ numerosity estimation as
a function of the actual numerosity. The relationship between
the g and Cl is shown in Fig. 10, with gray dots, along with the rep-
rint of the dataset from Experiment 2 for comparison. A first obser-
vation is that the g values from Experiment 3 are higher than the g
values from Experiment 2. Ideal performance would occur at §=1,
no underestimation, and the further g is below 1 the more under-
estimation the observer has in their behavior. The gray dots
(Experiment 3) are above the black dots (Experiment 2) and the
gray dots are closer to the ideal value of 1. This means that provid-
ing feedback did help the observers reduce their tendency to
underestimate dots. This was true across all levels of clustering
index (CI).

A second effect is also important to consider. That is, even while
feedback was successful in helping observers reduce their underes-
timation bias, this feedback was not uniformly successful in elim-
inating this bias. We observed a weak negative correlation
between the CI and 8, which was significant (R=—-0.43, p <.05).
The negative correlation between the CI and 8 suggests that when
the dots are more clustered together (e.g., higher CI), they are per-
ceived to be less numerous (lower ). However, it is true that the
negative correlation was considerably reduced compared to Exper-
iment 2 where participant did not receive any feedback. Therefore,
these results are somewhat mixed. That the g values in Experiment
3 are closer to the ideal value of 1 suggests that subjects can learn
to overcome their underestimation bias. But, that we still observe a
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Fig. 10. Model prediction for g, which reflects the magnitude of underestimation of
dot numerosity as a function of CI (clustering index) a measure how much dots are
clustered together. For ease of comparison, black dots reprint the data from
Experiment 2 in which participants did not receive any feedback, and gray dots
indicate the data from Experiment 3 in which participants received feedback about
the actual answer on each trial.

relationship between 8 and CI reveals that, even with feedback, the
observers still display the cost of increased clustering index and a
persistent underestimation bias with increasing clustering index in
the displays. This suggests that reliance on perceptual groups for
numerosity estimation cannot be completely eliminated, because
perceptual groups are extracted automatically and rapidly and
affect estimation of dot numerosity.

5. General discussion

We all share the remarkable ability to rapidly perceive the
approximate number of items in visual collections. Results of pre-
vious studies suggest that extracting approximate number infor-
mation may not require the sampling and segregating of
individual items from a collection, rather some holistic process
may be involved (Barth et al., 2003; Tibber et al., 2012). However,
even if each individuated member is not segmented, a sense of
“how many things there are” must included a description of the
thing that is to be counted (e.g., “dots of this size”), and the extrac-
tion of approximate number might rely on this or some other uni-
tizer to group continuous perception into chunks for further
processing. We propose that perceptual groups extracted in an
automatic and pre-attentive manner can serve as such a unit for
approximate number estimation. In Experiment 1, we found that
participants’ perception of groups in random dot arrays could be
fit by a k-means clustering algorithm and that the predictions of
this algorithm more closely matched human responses then two
versions of the popular CODE algorithm (in fact, we tested all avail-
able versions of CODE and our k-means clustering algorithm was
superior to all versions of CODE - we presented the two most rel-
evant versions of CODE here, the original and the single parameter
version).

In Experiment 2 we demonstrated that the output of the
k-means clustering algorithm can predict number estimations in
random dot arrays and that the predictions of this cluster-based
number algorithm outperformed a leading model of number esti-
mation (the Occupancy model). The number predictions generated
from the k-means clustering algorithm matched more closely the
number estimates of real human subjects, suggesting that
perceptual groups may play an important role in determining our
conceptual experience of approximate number. Specifically, as
items are grouped into fewer perceptual clusters, the perception
of approximate number becomes biased towards the items looking
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less numerous. In Experiment 2 we found that this effect of cluster-
ing remained even controlling for the density of the display.

Lastly, in Experiment 3 we found that the impact of perceptual
clustering on number estimation is not under voluntary control.
Participants could reduce, but not eliminate, their underestimation
bias by recalibrating their responses according to feedback pro-
vided on each trial - clustering still caused them to underestimate.
This is consistent with the possibility that some of the effect of per-
ceptual groups on numerosity estimation is not strategic but may
be automatic.

Perceived groups in a visual image have been considered as a
compulsory product from pre-attentive processes (Neisser, 1967).
Such groups may serve as a form of primitive chunking - generat-
ing a hierarchical reorganization of items into groups with each
group functioning as a unit. In this manner, perceptual grouping
may allow for parsing multiple nested-levels of representation of
the same stimuli from individuated items to one global scene per-
ception. Halberda et al. (2006) suggested that, in a number estima-
tion task, hierarchical coding of “group” and “individual” are both
available for enumeration by the approximate number system.
They further suggested that the level of a “group” may be neces-
sary prior to enumeration of individuals by the approximate num-
ber system. The groups structured by perceptual grouping are a
reasonable candidate for extraction of approximate number, and
this may be especially so in displays of randomly scattered items
where the first challenge for enumeration is to determine what
aspects of the visual image are to be used for ensemble perception.
It is therefore reasonable to expect that the elements are spatially
grouped into clusters even before extraction of approximate num-
ber. Groups built from early automatic grouping processes may not
be easily overridden or split into single individuals - e.g., such seg-
mentation often requires focused attention towards each individ-
ual object (e.g., Burkell & Pylyshyn, 1997). Therefore, perceptual
groups built from the visual image may serve as a unit for ensem-
ble perception, allowing for a fast, effortless process in a global
manner. When elements form a cluster, they will be experienced
to be less numerous than items which join to form multiple clus-
ters because they tend to be perceived as a single unit and to serve
“as real as the organization of a homogeneous spot,” (Koffka,
1935).

Most of the classical demonstrations of perceptual grouping
have focused on “effective” stimulus images that were generated
in the manner that they apparently contain distinct groups (e.g.,
clusters of elements are obvious enough) so that the viewers are
guided to experience similar patterns from these images. It is
somewhat true that human observers’ grouping patterns have
not been rigorously examined in ambiguous cases in which the
goodness of grouping in the images is low (e.g., when items are
randomly positioned and not clearly clustered).

In the current study, we presented randomly positioned dots in
a visual array so that there was no clear cue for observers to group
the dots in a specific way. In order to formally describe and com-
pare observers’ grouping behavior we introduced a new k-means
approach to describe grouping patterns based on proximity. This
model relied on a modified k-means clustering algorithm, with a
single free parameter for the size of grouping window. In the
model, grouping window size functions as a threshold for grouping
such that items that are closer to each other than the value of
grouping window size would be grouped together. We found that
this simple model can explain participants’ grouping behavior
remarkably well and accurately predicted their estimation of the
number of perceptual groups.

Our approach allowed us to quantitatively describe human
grouping, to compare among participants’ grouping patterns using
a single value of grouping window size from each individual. We
found that the best-fit values of critical distance for determining

whether elements were grouped into one cluster was generally
approximately 3.9° of visual angle, measured by the diameter of
the best fit grouping window. The critical distance for grouping
was highly consistent across individual subjects and across the
stimulus images regardless of the actual number of items in each
of the images. Note that we intended to use the least-constrained
settings in which dots were randomly positioned in each visual
array and participants were free to group them however they felt
the most intuitive and natural for them. It is therefore intriguing
to see that participants mostly agreed with each other and that
their grouping pattern remained quite consistent across different
images throughout trials.

Our window-based clustering algorithm provides a formal
description of perceptual grouping of items by proximity and
how observers’ grouping behavior may generate a bias for the
rapid extraction of the approximate number of items. In particular,
our approach suggests a viable mechanism of underestimation of
approximate number: when elements are located within an obser-
vers’ grouping window size, they are underestimated while when
they are further from one another than an observers’ grouping
window size, they are not underestimated at all.

These findings on grouping and the underestimation bias in
extraction of approximate number may also be consistent with
the emerging evidence that vision is often limited by spacing
between objects. ‘Crowding’ can occur when objects are too close
together and features from multiple objects are mandatorily com-
bined in perception. In many different studies, crowding has been
observed: grating discrimination, object recognition such as faces,
reading letters, visual search, and selective attention (for review,
see Pelli & Tillman, 2008). Observers fail to discriminate and recog-
nize items within the window where the spacing between items
does not exceed a critical spacing and the size of the window limits
the efficiency and speed of visual processing such as reading and
search (Pelli & Tillman, 2008; Pelli et al., 2007; Reddy &
VanRullen, 2007). Within the window, crowding occurs as a pro-
duct of “faulty information pooling,” (Levi, 2008; Pelli, Palomares,
& Majaj, 2004; Pelli & Tillman, 2008). A similar idea was also pro-
posed using the concept of the minimum of attentional resolution
(Intrilligator & Cavanagh, 2001). The degree of mandatory integra-
tion of items within a given region is also modulated by the group-
ing principle (Banks, Bodinger, & lllige, 1974; Banks, Larson, &
Prinzmetal, 1979; Prinzmetal & Banks, 1977, 1983). For example,
the greater the degree of grouping between target and distractors
(modulated by similarity or proximity, etc.), the worse observers’
performance in detecting and discriminating the target item
(Kooi, Toet, Tripathy, & Levi, 1994; Sayim, Westheimer, & Herzog,
2010, 2011).

Together, our approach to window-based clustering allows us
to formally describe human observes’ grouping behavior based
on the window for spatial integration and a pooling process, and
our results show that the limit of the extent over which observers
can integrate features of multiple items mandatorily modulates
observers’ grouping pattern and the well-known underestimation
bias in extraction of approximate number. Our results suggest that
rapid extraction of approximate number from a visual array con-
taining multiple items can be achieved by spatial parsing which
relies on the fast and global processing of perceptual groups. Per-
ceptual groups may serve as units for extraction of approximate
number by providing fast read-outs from multiple sets of items
over space.
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