The effects of sampling and internal noise on the representation of ensemble average size
Abstract
Increasing numbers of studies have explored human observers’ ability to rapidly extract statistical descriptions from collections of similar items (e.g., the average size and orientation of a group of tilted Gabor patches). Determining whether these descriptions are generated by mechanisms that are independent from object-based sampling procedures requires that we investigate how internal noise, external noise, and sampling affect subjects’ performance. Here we systematically manipulated the external variability of ensembles and used variance summation modeling to estimate both the internal noise and the number of samples that affected the representation of ensemble average size. The results suggest that humans sample many more than one or two items from an array when forming an estimate of the average size, and that the internal noise that affects ensemble processing is lower than the noise that affects the processing of single objects. These results are discussed in light of other recent modeling efforts and suggest that ensemble processing of average size relies on a mechanism that is distinct from segmenting individual items. This ensemble process may be more similar to texture processing.
Im, H.Y., & Halberda, J. (2013). The effects of sampling and internal noise on the representation of ensemble average size. Attention, Perception, & Psychophysics, 75, 278-286. [PDF]